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APPLICATION OF A MIXING LENGTH SCHEME TO THE STUDY
OF EQUILIBRIUM TURBULENT BOUNDARY LAYERS

Roger Michel, Claude Quemard, and Roland Durant

ABSTRACT. A turbulence scheme, based on an improved
concept of mixing length, is applied to equilibrium tur-
bulent boundary layers.

Assuming an incompressible flow, the velocity pro-
files of a boundary layer subjected to both pressure
gradient and fluid transfer at the wall are determined,
as well as the influence of these two parameters on the
wall friction.

This treatment is extended to the compressible case.
The laws are established for the velocity and enthalpy
profiles. It is shown that pressure gradients have a
considerable influence on the value of the Reynolds
analogy factor. ‘

I. INTRODUCTION

The variety of boundary conditions concerned and the complexity of the /5%

results relative to turbulent boundary layers in recent supersonic and hyper-

sonic problems have shown that it is becoming increasingly delicate and pro- .

blematical to resort to the approximate techniques utilized so far,which

involve the empirical extension of incompressible results.

It is thus deemed necessary to avail ourselves of more thorough analyti-
cal methods and take into consideration as much as possible the properties
linked to turbulence structure. For this purpose, a scheme was drawn up based
on the classical concept of mixing length and involving essentially an improve;

ment over customary hypotheses.

»

*
Numbers in the margin indicate pagination in the original foreign text.




It first proved true that a really convincing check on the hypotheses in
this scheme could only come with a comparison of the results to which it leads,
with a sufficient number of coherent experiments,and that this check should be
first carried out in an incompressible fluid. The special opportunity presented
itself at the conference on calculating turbulent boundary layers held at
Stanford University in 1968, where we were allowed to present and compare with

experimental data a method of calculation based on the application of the scheme

" to incompressible equilibrium boundary layers [1].

It later appeared possible to extend the treatment to the case of a fluid
transfer at the wall. Attention was turned to the case of a compressible fluid

where it was possible to make a parallel application to thermal boundary layers.

Thus, we have a set of results by which we can analyze in a systematic
mannexr the effects of the principal factors which may act on the development

of a turbulent boundary layer and on the friction and heat transfer caused by

it
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II. HYPOTHESES AND RESEARCH PRINCIPLES

II.1. Proposed scheme for mixing length

IT.1.1. Modifications Required in Customary Hypotheses

In order to obtain an expression for turbulent friction as a basis which
will allow us to study the problems involving the conditions at the various

boundaries, the scheme to be proposed is based on the classical concept of

into account the properties brought to light which are quite obvious from ex-

perimental data.

The criticisms which should be made of the customary hypotheses will first

be summarized in three points: !

'— The classical application of éhé"ééhééﬁé is from the outset“iiﬁited

to the part of the flow for which friction is made up essentially of the tur—%

bulent term.

— Since the concept of mixing length is originally applied to longitu-

dinal fluctuation u' of velocity, it should always be more or less explicitly

supposed that vertical fluctuation v' is proportional to it or that the tur-
bulent friction is proportional to turbulence intensity, to end up with the

usual expression

eopruep s a

Experience shows that this proportionality exists in the greater part of the
boundary layer; it also shows, however, that it no longer holds in the vicin-
ity of the wall and that the ratio of turbulent friction to turbulence inten~

sity tends towards zero with distance to the wall.

P

(I1.1)

‘mixing length. We have sought only to modify certain hypotheses so as to take_ jg_;

b
i
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— Except in recent treatments, the hypothesis regarding the evolution
of mixing length has hardly been worked out,or at any rate, has hardly been
used except in the vicinity of the wall. If it is generally accepted that
mixing length is proportional to y at slight distances from the wall, it is
also sufficiently clear that it should subsequently vary.in a manner which

differs from it considerably.

In view of these criticisms, we propose to make the following modifica-

tions in the hypotheses:

Friction will involve'generally not only the turbulence term, but also
the viscosity term; the turbulence term should be expressed so that it reflects
the fact that its ratio to the turbulence intensity tends toward zero at the

wall. Thus, the following formula is used for total friction.

SRR e

where F2 is a corrective function which should be zero at the wall; it inter- ' .
venes essentially in the viscous sub-layer and becomes one;éo that the expres— |
'sion for turbulent friction regains the classical form of the mixing length |
‘concept when the turbulence term has become more important than the viscosity -

term.

It is still granted that mixing length is of the form 7 = ky near the
‘wall, with a universal coefficient k on the order of 0.4; however, the mixing‘
length will diverge from this relationship as the distance increases; the
slipstream serves as an example suggesting that we look for an evolution
which makes I tend toward a constant value characteristic of the dimension of

eddies in the outer part of the boundary. layer.

The work dealt with the two essential p01nts.




- —- determination of a reasonable hypothesis for the variation in mixing “[Z;

length in the entire boundary layer;

— determination of the correcting function F2 which represents the efﬁgéﬁq
of proximity of the wall on the ratio of v' to u', and consequently, on the

expression for turbulent friction.

In fact, there were no' other methods than empirical ones for finding
these two elements, and they were initially obtained through experimental data;
. It should Be noted, however, that we sought to reduce to a minimum this reporg
F to empiricism; only as a result of findings on a flat sheet (or cylindrical 1
| drive) turbulent boundary layer in an incompressible fluid were the hypotheses
| established on mixing length and the viscous sub-layer correcting function. !
Applications to such other cases as pressure gradient, fluid transfer at the

wall, fluid compressibility later confirmed that the hypotheses were actually’

of sufficiently wide scope. l
IT.1.2. Universal mixing 1ength'curve !

The fundamental hypothesis is that mixing length is a universal function
of distance to the wall, when I and y are related to the physical thickness L
§ of the boundary layer and the universal function was obtained from experi- '

mental results on turbulent flat sheets in a compressible fluid.

One can thus support the hypothesis with a very simple'argument based T

on the existence of a deficient velocity law according to which 446 i5 4 -

, Uy
Z

( function of 5 independent of the abscissa. With the exception of the vis- |

’ cous sub-layer, friction is made up primarily of the turbulence term, and thet_
l_classical concept of mixing length can be written in the form
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The assumption of a universal function -5/- (%) rests on the admission that
distribution %;(%?) is itself independent of the abscissa in the case of a
P

flat plate; this is a very probable assumptiontin view of the conditions with
simple limits which affect 'ZY‘CO, and in view of experimental data.

A simultaneous examination of the experimental distribution of friction
and velocity in a flat plate boundary layer allowed us to determine the given

mixing length curve (Figure 1), which can be shown by the formula

o

L .0085th(_k _ }_) (11.3)
& T \ooes |
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The slope at the origin is k, which in accordance with most recent hypo-.

theses was taken as:

keQ41 (I.4)

Mixing length later diverges from this slope and tends toward a value of

0.085 in the outer part of the boundary layer.

II.1.3 Viscous sub—-layer correcting function

Since the function F2 for the viscous sub-layer is to be used to define
- turbulent friction between the wall, where its value is zero, and the turbuleég
izone, where its expression should approach the classical formula for mixing
Elength, it was obtained by using the results of joining the linear velocity
glaw in the laminar film and the turbulent logarithmic law for the wall (see
‘Figure 2). A formula which is often used is that proposed by van Driest [3] ;
to represent the experimental results of the case‘of551;}pq§§§§}:channe1; it

gives the velocity gradient by the formula:
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Figure l. Universal curve for mixing length.

Figure 2. Functional‘diagram.«




du’_ 2 (I1.5)
dy" 1+{1+4 kztny(L exp(- yyzg))z X

This law joins a linear law with a logarithmic one when y+ goes from 0 to a

E ' higher value; the usual variables of the wall law-are used:

u*z—q ;y*:M

U, RV
where u T is the friction speed.

Since we are dealing with the vicinity of the wall,vwe can use the "wall | /9
approximation” in the classical manner, according to which the inertial forces
are negligible compared to viscous and turbulent stress, so friction remains 1
essentially equal to its value at the wall. We may also concede that mixing |
length is proportional to the distance to the wall. The Equation (II.2) pro~ :

posed for total friction thus gives:

=7= au"‘*f—z/(zf,z (a u.jz° (11.6)'

| The solution of the system of Equatioms (II.5) and (II.6) immediately
gives the desired elements. Laminar and turbulent friction, as well as the

corrective function for the viscous sub-layer are thus given by the equations:

7 VL
{-:6‘_!;-:-;—%-9 (11573)
e |
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functions of y+ in the case of a cylindrical channel or a flat plate under

consideration.

It will also be necessary, however, to deal with other cases which may
involve a fluid tramsfer at the wall or a compressibility effect where it does
not appear probable that FZ will still be a function of y+a Thus, for a gen-
eral case, we sought to make a hypotheses for F2 which will include the para-
meters of viscosity and turbulence which might affect the phenomenon. For
that we must assume that the corrective function in the general case is a
universal function not of the distance to the wall, but of the ratio of tur-

bulent frlctlon to v1scous frlction T /Ty This function is immediately

{ derlved from the elements just establlshed for the flat plate which give:

(11.8)

2= {1,426 KF tog (1-F))" } P21

It may be more convenient to use the relation between the corrective

function F2 and the new ratio:

i_@ 1 Z't Fﬂau
T F2 um 9y

The corresponding curve is shown in Figure 3. It shows that the corrective
function F2 is in fact zero when turbulent friction is zero, i.e., at the
wall; it tends toward 1 when 2}1 /f?{~tends toward infinity. It reaches in
actuality a value very close to unity when the ratio of turbulent friction to

viscous friction attains a value on the order of 401Q£:50°'

One can also see that the equation for total friction: Zﬂ_z;,z‘, with /10

Q_ﬂ_:}'- and ! Ut‘ff‘zlz(ayu) can be put in the form: -

Z’ﬁ:’i A
/u’-f/ T/

S -
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Figure 3. Corrective function for viscous sub-layer.

where: .
2., 92
2L z' {7 i‘ﬂlﬁ«_—’_ }4/2
: g U ,u

Identifying it with (II.8), F is expressed as a function of total friction
and mixing length by the following Formula (II.8 a)

F—f ex,o{ 26k (2’,‘}%}

— e — (II.8a)
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IT.2. Research Principle for Equilibrium Boundary Layers

IT.2.1 Preliminary Observations

The obvious interest of the hypotheses we have just set up is that they
allow us to handle an expression for total friction in the different regions
distinguished in the turbulent boundary layer and to use that expression to

study local equations for the boundary layer.

It should be especially noted that the corrective function F2 allows us
to take up the viscous sub-layer; it can be used later to solve the equations.

for the boundary layer in the natural condition of u = o and y =0,

In a general manner, it is possible to introduce the expression derived
for friction in a local equation for momentum and attempt to solve it by
numerical means; a finite differences technique currently under investigation
should allow us thus to obtain exact results for all conditions at the boun-

daries which we might encounter. -

Nonetheless, we attempted to find in advance a means of checking the
hypotheses by applying them to a special, but important type of flow, i.e.,
that of equilibrium boundary layers. Moreover, it is in connection with these
equilibrium boundary layers, which represent the homolog of similar laminar
solutions in the turbulent case, that we will be able to examine in a syste-
matic manner the effect of such factors as pressure gradients and fluid trans-

fer at the wall and to undertake an analysis of the effects of compressibility.

The general principle of this research uses the very classical notions of
exterior and interior boundary layers in the majority of studies conducted so
far on the turbulent boundary layer. The obvious interest in this technique
is that it allows us to deal separately with the region in which viscosity
occurs by taking advantage of a comsiderable simplification due to the proxi-
mity of the wall. .

(AR N ol LRI t 1 1 [}
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Nonetheless, we should emphasize that this simplification comes into play
on the condition that the Reynolds number is large, because the hypothetical

existence of an equilibrium boundary layer is not acceptable except in this

case as will be seen later.

II.2.2 Example of an Impermeable, Incompressible Wall

a) Interior and exterior regions — overlapping condition

-— According to ordinary concepts, the interior region is the region near
the wall in which the forces of inertia are small compared to the viscous and
turbulent friction terms and in which phenomenaare essentially dependent on
friction at the wallgﬁ Dimensional analysis leads us to represent the distri-

bution of velocities in the form

z

*all function ofy’s —Z&
U’=-g- =fumction ofy’s —

where u T is the friction speed:

Pl

That is the wall law dealing with the viscous sub-layer where the correc=—
tive function F2 comes into play and the turbulent wall region with logarith~

mic distribution.

—— The exterior boundary layer, beginning at short distances y, is the
region where the forces of inertia and friction are the same size; dimensional

analysis leads us to represent variation in deficient velocity in the form:

| M) function |

[




a function which should be independent of the abscissa for equilibrium boundaryl

layers.

— An important condition is that there may not be a discontinuity between

the wall law and the deficient velocity law; in fact, the two overlap over one
entire portion of the boundary layer; ome very generally granted consequence
is that the wall law and the deficient velocity law must both be in logarith- -

mic form in the overlapping region.

b) Form of the wa;l-friction law

The overlapping condition leads immediately to the expression of the
friction coefficient of the wall as a function of the Reynolds number. In the
overlapping region, the wall law and the deficient velocity law should be

written:

r K y ;
Up-U__ 1 Y |
e

Eliminating u/u.{, we obtain:

:‘ —u—'-i L) .k_joje ( \) )f'CITCE m (II.9a)

or:s .

{ 2 1 /C '- (II.9b)
\ -E;'-':-/—(—:foge( ) —é£ JZJ)#‘ Cte o

This relationship, in which the friction coefficient is first expressed as a

function of the Reynolds number for the physical thickness ¢ of the boundary

12
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layer,is one of the basic relationships in our treatment of equilibrium boun~-

dary layers.

c¢) Universality of the wall law — Wall condition

It is admitted very generally that the logarithmic turbulent wall law is
a universal relationship, which holds in the case of an impermeable wall when
there is a pressure gradient dp/dx. It is useful to support this hypothesis
and to show at the same time that it assumes that the Reynolds number is high

enough.

Therefore, the "wall condition" will refer to the simplified boundary
layer equation to be used in the vicinity of the wall and in which the inertia
terms will be neglected. For an impermeable wall in an incompressible envir-

onment the Navier-Reynolds equation gives:

(—3—17 =§£— whence .’U:f.*ﬁ(ﬁy -

aj 0 P dx
: : < 8% do
Using the variables of the wall law and deriving the parameter; /3==7F— 5[12
for the equilibrium boundary layers, we may write: O
.. e —
: z :17' /S y+o ) (II.lO)
'B;D 4 uz_sx, . N

v

We see that the wall condition in itsvordinary form T = Tp is applicable
to the case of'pressure gradients, only if the Reynolds number tends toward
infinity. The hypothe31s to be proposed later will permit us to find the wall
equation previously written for the flat plate with a pressure gradient:

1, __-Du';' F"k‘” +2 (Bu) . (II.6)

i

‘s'—"}/

|
|

oy
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The results established in paragraph II.1.3 thus hold for pressure gradients
in the case of large Reynolds numbers. The universal wall law is thus the
curve u+(y+) » which allowed us to accurately determine the corrective function
F2. With van Driests' Formula (II.5), where we let k = 0.41l, we obtain the
curve in Figure 4 which corresponds in the established turbulence to the log-

arithmic relationship:

11
“7: qu;e( )+525 | (11.11)

II.2.3. Extension to .i:he General Case

"Variables used = The preceding discussion may be taken up again in a
more general case, i.e., for the study of fluid transfer at the wall and for

the study of compressibiliy.

Interior and exterior regions,as well as a wall law and a deficiency law,
are still defined and will be applied similarly to variables other than velo-
city (or to transformed variables). We still find that the variables in ques~
tion should give way to logarithmic relationships in an area of overlapping

and this condition dictates the technique which allows us to define them:

— in a study of the wall law the variable Wf(v:‘f“’,u‘ h,T ’,¢F i sV/, »/’, /l)

is the first value sought which willugive“af loga:'iji_iﬁnif.{:ffél'éﬂt‘ibﬁsh;{i for the
'established turbulence 1n the form‘

(11.12)

== the correspondlng defiuency variable should be ‘7"3 ‘F which in

the overlapping region, takes the logarithmic form

14 oy [ B ] o
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Figure 4. Incompressible wall law.

Laws of friction and fluid transfer at the wall — They are determined

~by eliminating ‘P+ from (II.12) and (II.13) to give the logarithmic relation—

ship:

(II1.14)

ﬁu"’:%&j(&}%_ rC.Isz

Wall conditions — We still seek the solution at sufficiently high Rey- -

nolds numbers so that the pressure forces are negligible | compared to viscous

and turbulent stress in the wall region.

In the case of fluid transfer at the wall, it will be necessary to keep
the inertia term because of the injection velocity. In a study to be made in
an incompressible fluid, the Navier-Reynolds equation for the vicinity of the

wall will thus becomes:

3T _ éu.wE 3
22 ooy 2% where T=0,7P. Volde - (II.15)
@%%f%~"P&F‘

§ Y
S !
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In a study of an impermeable wall in compressible fluid, the wall condi-
tions found from the momentum equation and the energy equation are written

respectively

.Q.E: 0 }"Wherﬂe; G=Cle =z;a :
y e e e} - - '

(II.16a)

8)., R (II.16b)




III. BOUNDARY LAYERS WITH PRESSURE GRADIENTS
INCOMPRESSIBLE FLUIDS

III.1. Definitions and General Assumptions

An equilibrium turbulent boundary layer is defined simply as a flow for

“which the deficient velocity profiles remain similar; i.e. for which the

curve of Uz;:‘ as a function of j/&js independent of the abscissa. It was
experimental data which first showed the existence of such boundary layers,
The most obvious case and the first one observed was that of the flat plate.
Clauser [4] and Rotta [5] found that certain pressure gradients could give
rise to equilibrium boundary layers. Other authors, such as Bradshaw and
Ferris [6], Herring and Norbury [7], and Stratford [8] later established
results confirming their existence in various pressure gradients, positive or

‘ negative.

Equilibrium boundary layers were also the subject of quite a number of
analyses on the theoreticaléxgloitation1leve1. The establishment of solutions
from equations for the boundary layer is a quite recent developmenf, however.
We note the solution established by Mellor and Gibson [9] from a scheme for

eddy viscosity through a treatment quite similar to that presented here.

A first attempt to analyze the conditions for obtaining an equilibrium
boundary layer can be carried out, as was done by Bradshaw, from the overall

equation for momentum in the boundary layer:

%eds (49573

Equilibrium would prevail when the friction force and the pressure force /15

:u contribute to the variation in momentum in a proportional way.

g
Thus, the classical parameter &7 2;£L appears,which should remain con-
stant for an equilibrium turbulent boundary layer (in the same way as in similar

E T e i
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solutions for a laminar boundary layer). This result will be found again in

the treatment to follow.

III.2. Exterior Boundary Layer -
Solution for Equilibrium Boundary Layers

The general principle of research, as stated before, consisted in dealing
separately with the interior region, where the effects of viscosity are con- ’
fined, and the exterior boundary layer,in order to make use of the overlapping.

condition and end up with a law of wall friction.

However, we have seen ‘that in the case of an impermeable wall in an

" incompressible fluid, the effect of the pressure gradient diappears at large
Reynolds numbers. The curve given for the flat plate'is thus the universal
wall law, which in established turbulence in the overlapping region tends

toward the logarithmic form:

u

w1 _T_V) A.,
U,k &Je(v *525 ) (111.1)

It remains for us to solve the problem of the exterior boundary layer,

for which we shall seek a solution to the local equation for the boundary layer.
IIT1.2.1. Differential for Deficient Velocity

The region under study is that of an established turbulent flow where
- friction, composed primarily of the turbulence term, is expressed by the class-

ical formula for mixing length:

’U:thlo!"'(—%ﬁ;—)z”

According to the hypothesis of our scheme, the evolution of mixing length

is represented by the relationship:

18
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5 9065 &

where the scale is represented by the physical thickness § of the boundary

layer.

The thickness § is also the distance to the wall one should refer to

in this treatment. Thus, the dependent and independent variables are:

1=% i |S= =)

(I11.2)

where f is differentiated with respect to n.

Then we hypothesize that the deficient velocity profile is invariable /16

- according to the abscissa, and:

)0

Finally, we use the hypotheses given above to express the different terms

and develop the equation for momentum:

24, ,,2u_ 3T, . du
pu ax+‘pV¢3y-a;{+F“e dx ’

bearing in mind the continuity equation.-

. Thus, we obtain a differential equation for £f' as a function of N, an

equation which is first written as:

T(sznz)’z_zﬁf/‘ﬂa/ffzﬁ__c ¥ (f Xf a,f‘/:‘)
+ﬁ (—-, —-+1)(7zf” ff) 1 (11I.3)
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Ug, y' &' represent a derivative with respect to x, while f' and £" indicate
derivatives with respect to N. For greater clarity the following notations

are used:

(III.4)%

An equilibrium solution can be really found to confirm the hypothesis

only if these four parameters are constant.

In the first place, it is clear that this condition can be satisfied only.
if the friction term Y is zero. Thus, the equilibrium solution should corre-
spond to a Reynolds number tending towards infinity. We next observe that the
law of wall friction (II.9), which we will arrive at later thrqﬁgh the over-

lapping condition, permits us to express the parameter:

We have actually:

7_,1_4’ {, e, d'o 'Y/k ( ’)°
Loty [y cn on oY Spe o £ " ams

Since it is on the order of Yy, the parameter tends toward zero with it.

At large Reynolds numbexs, Equétion (II1.3) is thus written:

20
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(sz.uz);_/s(;?:,

(I1I.6)
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Now, in order to determine precisely the conditions, we shall first observe
that the stream function £, following this equation, is defined only up to an

approximate additive constant. To simplify, we shall select it so that:
=0 when 72:_0 (I11.7a)

Two further boundary conditions to be added are those of zero friction

. and zero deficient velocity at the edge of the boundary layer:

7‘;':7;'":& when 72;7. (III.7b)

’

. u=§
Finally, the remaining parameter /g can be expressed by Equation (111.6)
integrated from 0 to 1 and requiring that it satisfy the condition

sz"’z“-f'whené7=;0-i (III.7c)

Thus, we find the relationship:

U, 5’ | _1
( 7) +2/5 (III.8)

which expresses the last parameter as a function of B.

The differential equation giving the distribution of deficient velocities
for a boundary layer with a pressure gradient in the case of high Reynolds

numbers finally becomes

rry-zor(fze)ar] -

(III.9)

21




It brings into play the only pressure gradient parameter:

|fo=-

1 du,
Ue dz

oo

(III.9b)

III.2.2. Principal Characteristics Provided by the Solution.

We first note that the pressure gradient parameter B, formed here with
the physical thickness § of the boundary layer, is directly linked to the

parameter

which is used more commonly in the study of equilibrium boundary layers. In

effect, we have:

o uf, R (III.10)

where fl is a function of B given by the solution of Equation (9).
A technique for the numerical solution of tﬁis equation has been developed
and applied for a whole series of positive and negative values of the parameter
B. The solution thus gives the family of deficient velocity profiles f£'(n) of
the equilibrium boundary layers for negative and positive pressure gradients,

the lattex up to the separation point of 06-’~9. It also provides the friction

profiles %; (_g__) . 118

Characteristic integral ratios can also be derived which are commonly

used for the study or utilization of equilibrium boundary laye:s;

°o T (III.11a)



4 ' (III.11b)

The first brings into play the Clauser thickness A.

The factor for the deficient wvelocity profile in its usual form is:

G,:“__"l
‘ Tz (I1I.12)

f 5
~ the solution of Equation (I11.9).

f, and G are functions of the pressure gradient function B determined by
The asymptotic form of the equation used limits in principle the results

. to the region of very high Reynolds numbers. Experience, as well as attempted
" nonasymptotic solutions where Y is taken into account, show that the deformation
of the deficiency profile is small and that asymptotic results can, in fact, be

used in a wide range of Reynolds numbers to cover numerous practical problems.

It should be emphasized that the so-called "exterior" region overlaps the
wall region up to very small y distances, a property which allows us to deter-
- mine rather closely the common integral thicknesses of the boundary layer by
integration from % =0 of the deficiency profile. For displacement thicknesses

- and momentum, the following formulas are obtained:

Ea(er
s '\2 |

Lonle)fen £
8 2/ "2 (III.13)

-7 IIL.2.3. Wall Friction Law.




The relationship for the coefficient of wall friction is found through
the use of the overlapping of the wall law, given in the turbulent portion by
the logarithmic .Eormula (III.1) and the law of deficient velocity given by the
solution of Equation (III.9). The form of this equation and its solution show
that at small values of n deficient velocity is given by the 'lvogarithmic rela-"
thionship to the first order:

U, -u

y |
- Ug h-l?—{oge_sz*Dv
o | i (III.14)

where ﬂv‘is a function of the pressure gradient parameter.

Eliminating _a'/az,' from Equations (III.1) and (III.l1l4) we find a relation-

ship for the friction coefficient expressed as a function of thickness §:

(Ci)"/z ; {059 (‘%g ( ) )+DY ; (III.15)

| with
D A{:]DV" +525

.

The next step is to introduce the Reynolds number for the displacement
thickness into the friction law, using Formula (III.13) for §/§. This gives

. the classical formula:

2\ 1
1 ﬂ o*
CF) % 5“. (III.16)

' v

with

| DDyttt |

‘ Y‘/aais also a function of § determined by the solution.
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I1I1.2.4. Limiting Cases of the Solution.

Lower limit with negative pressure gradient. Study of Equation (II1I1.9)
in the iﬁtegrated form shows that the coefficient 7//f s+ £ ﬁ»should remain
positive if friction is not to become negative at any point in the boundary
layer. There is consequently a lower limiting value of the pressure gradient

parameter in accelerated flow. ' Numerical solution gave this limit as:

7 ) .
I - 4‘ ==
/Blum{ f 0’4 Cf/; i/

limif

It will be shown later (paragraph III.4.2) that the coefficient Cﬂ@rréya
is proportional to the exterior fluid drawn away through the boundary layer. -
The physical significance of this limit is simply that this entrainment canmot be

negative.

Large B results — Separation. The variable f' used becomes infinite at .
separation (Ur=0) and in this case,it is interesting to replace it by a
’ variable such aS‘%f-é;' which remains finite. The solution for separatlon
must be determined in principle from the form of the deficiency equation with

this new variable and when B tends toward infinity.

' Uo-U
Here, we shall confine ourselves to observing thatjgijg“'varies very
slowly with B at large values. Distributions corresponding to the values given
below for B = 2 and B = 5 are almost identical and should appreciably represent

the separation profile.

Similarly, the ratios of the different parameters to B vary very slowly
and may be extrapolated closely up to 1/8 = 0, The values to be retained in

separation are:

/9, (II1.17)




Note in conclusion that the velocity profile is easily found from the

separation and the form parameter corresponding to it: the law of friction

(III.16) gives the following when Cf.tends toward 0 at a finite ~52§ : .lgg
-
D*(Cf)k'] when G(Cf) 0575 and -5—:2,35.

(III.18)

I1I.3. Presentation of Equilibrium Boundary Layer Results

III.3.1. Principal Results of the Solution

A numerical program utilizing a simple difference technique with narrow
intervals (more than 400 steps from mn = 1 to n =0) was applied to the resolu-

~ tion of equation (III.9) with many values of the pressure gradient parameter
from the lower limit 8 = -0.44 to a high positive value corresponding to con-

(1)

. ditions very close to those of separation .

Table 1 gives the numerical values for deficient velocity f' as a function

of n for some of the parameters of pressure gradient B.

It is completed by Table II where we have regrouped the different con-
stants and integral characteristics of the equilibrium profile as functions
of B.

Figure 5 shows the deficient velocity profiles. Using a logarithmic
scale for n we find the curves to be linear at small values of 7 with a slope
of 1/k. The profiles for large values of B are shown as explained by using
the variable f'/8; one should note the very slow variation pointed out
previously and the tendency toward a limiting curve which should correspond

to the separation profile. .

1)

In numerical calculation a modified variable was used for f in order to
eliminate an iteration previously used until the boundary. conditions
were satlsfied. The.results obtained are slightly different from v
from _those presented at Stanford [1]v B R

26




! f
Lo ;

i ' X

’ 1 |
j

| 5
P |
‘ o o
{ 0

i , i

oy

;o

Table 1.

| 0.2 0.4 06 08 —Pl ‘

Table 2.




. ©-0,442
O‘o' 31

28

0-0,21

0-0,10
* 0

* 0,10
©0,20

¢ 0,30

¢ 0,40

4 0,60

240,80

.z %? ) v 5 §F
PP S Ct /@ 10 E’ .
T e o .
ﬁg//;// 27/ / N - 30,80 / 10
s i -
T / 0
/M///// /éo .
=0
| a1 ?%r' ]
] ~ //40 / a0
=TT | B i
— %0 /«”;;j‘ P % .
R . A= 150

Figure 5. a) Deficient velocities; b) Deficient velocities

e Ty ot e

with large 8; c) Deficient velocity profiles.
Logarithmic scale for y/S.




Figure 6 shows friction distributions in the boundary layer.

[/
(.g;=42f'2
One should note in particular the effect of positive pressure gradients which »
quickly give rise to a maximal friction much greater than the wall friction.
At large values of B representation in the form '(7/'6",/:}2 leads to curves which

vary very little and whose limit gives the friction profile for separation.

Figure 7 shows the evolution of the wall friction coefficient with the
Reynolds number for displacement thickness 6(1) (Formula III.16). We see that
negative pressure gradients give rise to an increase in Cf which is normal and
that positive gradients produce the opposite effect, giving zero friction when’
B tends toward infinity.

I1I1.3.2. Comparison With Experimental Data.

One interesting aspect of studies in incompressible fluids is that we can

. check the scheme hypotheses by comparison with a great number of confirmed ex-
perimental data. Such checks were carried out in particular on the occasion

. of the Stanford conference, for which an important preparatory project by Coles
and Hirst [2] provided a considerable volume of experimental data. :This docu~

" ment was widely used for our comparisons’regarding deficiency velocity profiles.
* In order to avoid the experimental inaccuracy which is ahmest inevitable in :
 determination of physical thickness S, we preferred alw;iéito relate the

- distance y to Clauser's thickness integral:

Aféae

The first comparison of our solution with experimental results (Figure 8)
deals with the case of a flat plate. The experimental results are those which
~gave rise to the well-known regrouping carried out by Clauser [4]. Obviously,

we expected satlsfactory agreement since it is from these very velocity and

friction dlstrlbutlons in a boundary layer of a flat plate that our hypothe31s
on mixing length was established.
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The check involved comparing the solution with the majority of available /24
experimental results concerning equilibrium boundary layers with pressure gra-
dients — results which were reanalyzed as é whole in great detail by Coles
and Hirst. Note that the object was not to compare experimental results with
a calculation of the boundary layer but to check that the experimental profiles
could be effectively shown by the proposed family of theoretical profiles.

Each comparison was performed with the theoretical profile chosen in each case
as that which corresponds to the experimental vélue of the factor in the form

of G. The results obtained are shown in Figures 9a through 9d.

— Figure 9 shows the results obtained by Herring and Norbury [7] which
involve a negative pressuré gradient.

—— Figures 9b and 9c show the experimental results of Bradshaw and Ferris /25
[6] and Clauser [4] found with positive gradients.

— Figure 9d shows the comparison with velocity profiles measured by
Stratford [8] in conditions near separation.

Finally, Figure 10 gives the comparison with experimental profiles plotted
by Schubauer and Klebanoff [10] with different abscissas in a pressure gradient
up to separation of the boundary layer. We are noilonger dealing with an
equilibrium boundary layer, as the cqnsiderable variation of the form factor
G shows. It is obviously of interest to observe that the experimental profiles

can still be represented by those of the family of equilibrium profiles.

A noticeable divergence between the experimental profiles and the equili~-

- brium profiles occurred only in the special case of relaxing‘flOWSf—~ thus, for
example, a flow in which an inténsg posi;ive pressure gradient leads to condi-
tions close to separatioh and which is later attenuated and returns to a uniform
flow. We ﬁere able to note that the profiles plotted with respect to the

maximum form~parameter cogld be quite noticeably”different from an equilibrium

profile when it increases toward a fl#t:plate‘value with the same form factorA'
G. '

[ I ' 'y
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III.4. Utilization of an Integral Method of Calculation for-
the Case of a Nonequilibrium Boundary Layer

IIX.4.1. General Principle

In view of the preceding comparisons, we may seek to establish an approxi-
mative method of calculation for predicting the development of the boundary
layer in the case of a flow with any given pressure gradient using the results
relating to equilibrium boundary layers in solving the boundary layer global
equations. Such a method'was prepared and applied [1]; we shall review the

- technique and some of its results.

The most immediate technique, altogether comparable to that of the Karman~
Polhausen method for laminar flow, would mean using related laws directly which
relate the form parameter and the wall friction coefficient to the pressure
~gradient parameter B for an equilibrium boundary layer, in order to solve the

~ global momentum equation.

However, experimental results show,that if the velocity profiles can be

- correctly represented by the family of equilibrium profiles, the relationship
between the form parameter and the experimental pressure gradient parameter B
may differ considerably from that of an equilibrium boundarxy layer in the

_ general case.

A better technique consists of joining an,auxiliary global equation to

' the Karman equation, bringing. into. play the characteristic parameters of equil-
ibrium profiles but without direct use of 8. The auxiliary equation used here;

is the entrainment equation.

III.4.2. Equations and Solution Method .

1

Pt [ bbb
Karman equation. . The general form of the overall equation for momentum

in an incompressible plane flow is:

t [
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C Iy a(u
b .48, 5 8/8+2 j %5
2 dx Uy odx u a(x (u )d} (III1.19)

The term including the longitudinal derivatives of turbulence intensity

is neglected in the quasi-totality of calculating methods proposed so far.
Given, however, that it can play an important part in intense pressure gra-
dients, especially approaching separation, we deemed it necessary to retain it

and look for an estimate of its wvalue.

This estimate is found very easily by returning to the elementary hypo-
thesis of the mixing length theory, according to which fluctuations u' and V'
are proportional to each other over the greater part of the boundary layer.

The appropriate term in the Karman equation is thus in the form:

T _C —
,[ (u, v 2) d} = 75'.[ 7 d%' ) (III.20)

where 7; is turbulent friction and C is a constant to be found empirically.

Schubauer and Klebanoff's analysis of turbulence measurements bore out
the preceding relationship and led to a constant C on the order of 3.5; this

value was used in boundary layer calculatioms approaching separation.

Entrainment equation., Introduced initially in an empirical manner by
- Head [11], the entrainment equation. can be justified and evaluated through the

use, for instance, of the following, 6 arguments: . . L

— The entrainment equation is made of none other than,the overall

continuity equation: | y

|(III.21).




e
* uc
function of the form parameter 5-5/5. and resorting to experimental data to

Empirically, Head found the entrainment jxs by granting that it is a

determine the function. We propose to replace this empirical approach by

using the properties of equilibrium boundary layers.

— Let us first observe that at the edge of the boundary layer (}= S“)‘1

the local momentum equation can be written:

P, dudd, . du_d% ., dag

;:,aae Tx "Fue"; —; *f Ve —J—"g‘ *Pde T F

Thus, entrainment is connected with the friction derivative by relationship to

velocity:

A8 v 1 (_é_z) .
dx U pUe \WU/§=b

— Given the fact that the hypothesis was made from a family of equili-
brium profiles, we can find the friction derivative by means of Equation

| (1II1.9) for equilibrium boundary layers; this immediately gives for n.= 1l:

/) ¢ e o |

2 =P,
‘a(e—“ ﬁ -
[ }

U.-CW

- whence we can find the entrainment

a/S e p _Céﬁ_
dz - Ue o (1II.22)

— The parameter /D~ '[—/ +2/$ thus appears to be the essential one by
means of which the equilibrium layer results are incorporated into the 1ntegral
method. We shall regard the other parameters fl’ G, D and T as functions
of P and not of B; These functions,determined by the solutlon for the equil-

ibrium boundary layers,are given by the numerical values in Table II.
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Final system to solve and relationships used: The method consists of

simultaneously solving the two overall equations:

— Karman equatidn; written in the form

C do. , 8Y8:2. du;f__c o
x2 T dx i Ue dz fu c/x (57:/’7}

f
¢

[

with

gLa

— entrainment equation; in view of the arguments, it becomes:

P\,E ”ed {55)]

~— the integral thickness ratio is found from the formulas.

’5*»» C 9 o C
1/4 G 1-6+ 5

{g 7N\ 2 I A Z s

—- the relationship for the friction coefficient is:

DBl Ly Ll e
\¢C, =% log x D"

~—— the solution for the equilibrium boundary layers gives the different : /28

. parameters as functions of the entrainment parameteru ,O,,?__ +2/S
b4

5+£(F); G=G(F) ; D™ D"(P) T=T(F) .

Bl

Their numerical values are given in Table II.
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III.4.3. Sample Results

The method jﬁst presented was applied at the Stanford Conference to a
whole series of experimental cases chosen by Coles and Hirst involving the
consideration of a great variety of pressure gradients. Figure 1l shows four
typical examples of results found from that method by comparing the calculated

evolution for the form parameter &7/ & , the friction coefficient C_, and the

‘ £?
Reynolds number for momentum thickness ./?9 —_--.(:'g_g to experimental data.

We should note the completely satisfactory agreement found in the case of

Herring and Norbury — that is to say, in an accelerated exterior flow.

Newman's experiments and those of Schubauer and Klebanoff relate to a
positive pressure gradient intense enough to lead to separation of the boundary
layer. We thus tried to keep in mind in the calculation the effect of the

term including the longitudinal turbulence derivatives.

The best results were found for Newman's experiments: the use of a
turbulent term constant C = 3.5 effectively improves the results, especially

as regards the form parameter and fﬂ?; and the development of the boundary

~ layer is correctly predicted practically up to separatiom.

On the other hand, in Schubauer and Klebanocff's case it is clear that

- taking into account the turbulence terms was not adequate to follow the devel-

: opment of the boundary layer up to separation, even with a comstant C greater
than 3.5. This is a case, in fact, where the vast majority of the calculation
f methods proposed at Stanford fell short of the mark. It would appear that the
important effects of tridimensionality, due to the development of boundary
layers on the side walls of the blower, were present in these experiments (as
in many others). It is always. quite difficult to, distinguish the effects
arising from the turbulence terms, and this is an almost insurmountable problem

in real control of calculation methods through experimentation.

[
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The "Moses" case refers to a "relaxing" flow; a strong positive pressure -
gradient leads up to the neighborhood of separation (H increases to 2.2 and
C,. diminishes to almost zero); it is next attenuated to the extent that it

£
gives uniform flow downstream. It is in this case that a difference between

the experimental velocity profile and the theoretical equilibrium profile
appears in the relaxation region following the minimum of the friction

coefficient.

In spite of that,; the calculated form parameter and friction are close
enough to the experimental values; the deviation is more noticeable for the

momentum thickness. It should be noted that we are dealing here with a

boundary layer developing along a cylinder, and that the computation did not

take into account the eventual effect of transverse curvature.




IV. CASE OF A FLUID TRANSFER AT THE WALL ﬂ /30

IV.1. Introduction - Review of Research Principle

Still in an incompressible fluid, we now propose to study the case of a
fluid transfer to the wall, which differs from the impermeable case by the new
limiting condition of a nonzero vertical velocity V), which may be either

positive (blowing) or negative (suction).

We still apply the technique of treating the interior and exterior regions
separatel& in order to then use the necessary overlapping of the corresponding

laws.

For the exterior region, we still hypothesize equilibrium, but in order
to do so in developing the boundary layer equation it is necessary to first
specify to which variable the equilibrium hypothesis should apply. The method
is to use the overlapping condition and first to seek the variables (* and
W' -¥7 which will give the logarithmic functions in the overlapéingrarea.
We shall find that the variables u” and yJ-(* for the impermeable wall
need to be replaced by the transformed variables V' and V,?-V* to bring in

.the injection velocity: ’

N O

Yz
(1v.1)

These are functions previously used in studies of the turbulent boundary
layer with mass injection. We see that they were introduced so far primarily
in analysis of experimental results, while now they will be used in a theoreti-
cal solution. We also see that the experimentation in question has so far
" been limited to the case of uniform exterior flow; we shall be able to establish
theoretical results in. the presence. of pressure. gradients jusﬁ as we did for

the impermeable wall. ;
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We may further attempt a first analysis of the conditions which should be
achieved to obtain an equilibrium boundary layer through the use of the overall

momentum equation which is now written:
T, PV p5*geod (,D.uae).k (1v.2)
Pl pTe T dx dx\ TE

There would thus be equilibrium when the forces of pressure, friction and
momentum AP VpUe due to mass injection contribute proportionally to the varia~
tion in momentum in the boundary layer. This condition introduces two

parametexs:

LB 6" dp
‘- Tp (AT dx

We shall find that an equilibrium solution in the development can be
found if we assume that P is constant; we shall see a transformed pressure
~gradient parameter emerges which brings TF +FVPUe in place of the. ’&‘P in the

- N a

impermeable case.

IV.2. Interior Region - Wall Law

IV.2.1. Wall Equation

It is quite obvious that the new condition vp# 0 does not allow us to
use a universal wall law «” (y?%) as in the impermeable case, and we must find
the modifications that fluid transfer brings about in the distribution of |
velocities in the interior region. It is here that the hypotheses concerning
mixing length and the corrective function for the viscous sub-layer become
~especially important since they will allow us to find the solution from the
natural limiting condition « = 0‘; for Y =0.

For that, we will use what is called a "wall condition” or a simplified
form which consists of disregarding .the inertia term arising from the component .

u of velocity in the local momentum equation. Still seeking a solution for a
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~ large Reynolds number, we shall also disregard the pressure gradient term and

- obtain:

3T\ 24 o
(37)=r oS5 soit <Toepipu

‘ Passing to the customary variables of the wall law and expressing friction as |

' the sum of the viscous and turbulent terms, the wall equation is written:

. O
=7+ 1,;,*uf= ’a‘gff Fz/fzy+2 (—a'%) .
e (1v.3) .

The turbulence term includes the corrective function which we assumed was a
universal function of the ratio of turbulent friction to laminar friction

(Formula II.8 and Figure 3). Since we are dealing with the vicinity of the
"wall, we kept Z= A’% as mixing length. |

IV.2.2. Results for the Physical Variable

A numerical program for the solution of Equation (IV.3) was set up and
applied for a whole series of values of the transfer parameter. It allowed
us to find the influence of fluid transfer on the velocity distribution in

the viscous sub-layer and in the turbulent region of the wall.

7 Some of the profiles obtained are shown in Figure 12. We see that mg;*
~gives rise to a noticeable modification in the wall law in its usual form
j¢*(yfja The curves diverge markedly from that of the impermeable wall(1§é%i@.
Moreover, Equation (IV.3) no longer gives the same logarithmic form as with

" an impermeable wall in a turbulent flow, but rather‘a solution in the form:
u'=a &jy"'v*b faj’y"‘f C.

awv.4)

We see that in the case of suction we must confine ourselves to moderate

" values for the rate of fluid transfer. In the case of a negative velocity
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Figure 12. Wall law with fluid transfer in incompressible
~ flow.

Vp the wall condition shows that friction T tends toward zero when ¥ increases.
We then find, as we shall explain later, that the turbulence conditions set up
can no longer be attained, which obviously makes the whole technique of our

research fall short of its objective.
IV.2.3. Variable Leading to a Logarithmic Law.

Confining ourselves to, rates of transfer for which the turbulence condi-

tions set up can be obtained, we must now seek a variable which will allow us

to find a logarithmic law when the,viscous‘térm is negligible and the function -
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= F2 is equal to unity.

Thus, we must transform the equation:

«\2
, ’/+v;q_"=/r:v'2 %}

(Iv.5a).

into an equation in the following form for the transformed variablef”\/l-"':

We immediately find:

=k

du*

2-}—” \/
i

where }/* must vanish at the wall like «*.

72 I

dV'= T 'WB§QV+=;,‘-2’; {(hy;ju’)%_- 1}

(IV.5b)

(1Iv.6)

The established results for 7 are repeated in Figure 12 for the trans-

formed variable V” and we immediately see that using it allows us to rearrange
the results remarkably.
established turbulent flow:

: V'r:—Z' loge y"'-r Ccfe

We once more find the logarithmic formula in the

The constant varies quite little with injection velocity, more especially

so in the case of blowing (-'V.‘,n*> 0) The numerical results let us set up the

table below:

e

Vb

- 0,07

-0,05

-0,03

. 0,05

0,10

0,30

0,50

- Cte

7,1

6,1

5,7 .

5,25

4,9

4,7

4,3

4,2

These results confirm different attempts

at analysis of experimental velocity
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profiles made by Stevenson [12], in particular where it appeared that the wall

law with a transformed variable was independent of the injection rate in approx-

imated experimental dispersion up to values of ’VP* on the order of 0.10.

IV.3. Exterior Boundary Layer - Deficient Velocity

With V7 as the variable which gives a logarithmic form to the wall law,
defined by Equation (IV.6), the variable to be used for the exterior region is

Ve-VT.

Introducing the injection parameter P already defined:

f ....'_%_”ﬁ e
,;VP Cr/2 (.7)’

we first see that we can write the deficiency variable in the form:

‘ '%*-v;-% {@*P)%f(@ 7’%)%} .

(We still use the notation 'y ;( Cr /2)4/3)). It is immediately noted that the

deficiency variable is defined only for P>7.. We are still dealing with a

limited application of the solution to moderate rates in the case of suction.

The technique for setting up the deficiency equation is thus identical

to that which we applied to the impermeable wall:

—— The independent and dependent variables are:

vy
'»7"54“ jraVe=V==— (1v.9) -

X4

~ Friction is given by the classical formula for mixing 1ength_.§f' ‘2=71)., ‘

" where £ /& evolves according to the assumed universal law (II.3).
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— The equilibrium hypothesis is applied to the deficiency profile of

: the transformed variable:
(_a_i’ -
\oz /7

—— The hypotheses are used to express the different terms of the momentum /34

equation taking into account the continuity equation.

Development leads to an ordinary differential equation written only in

- the shortened form:

fonz)

(1Iv.10)

in which all terms multiplied by the friction coefficient Y are regrouped in
the same parentheses and not expressed here.

Thus, we see the same parameters appear as in the case of an impermeable
wall; the pressure gradient is still modified, however, and the injectiomn

velocity is introduced:

.- a’

W“P )% (1v.11)
PI
There is also a parameter linked to fluid transfer: iﬂ%
Ueg 1+P

It is again clear that an equilibrium solution requires that all these
parameters be constant. We must thus first limit ourselves, as in the case of '

“an impermeable wall, to an asymptotic solution with infinite Reynolds number
(y~=o0).
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It is also seen that an equilibrium solution will be found if P is zero;

for what follows we shall use the hypothesis that

p= Yl . : _
- Cf/z (1v.12)

To express the remaining parameters we use the technique adopted for
impermeable walls, bring into play the wall friction law on the one hand and
the form of the equatlon integrated between 0 and 1 on the other. We once
more find that ﬁ “, % tends toward zero as does Y and that the last parameter

Zﬁz‘-s- is expressed as a function of B as for an impermeable wall.

. Ue

. The deficiency differential equation with a large Reynolds number is
" finally:

(3£ 2)228F" (72-*2/5)7#

(Iv.13a)

in the case of a fluid tramnsfer SPeed;'z}),/a-'e " proportional to the friction
coefficient. =

It brings up the only transformed pressure gradient parameter

- ._7._ duz”‘!
( _E/zu da |

(Iv.13b)

It has the same form and the same conditions at the limits as the

~ Equation (II1.9) for the impermeable case, toward which it tends when P tends
toward zero.

IV.4. Law of Wall Friction

et et @+ o i 4§ o e e e
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The relationship for the wall friction coefficient is found through the
use of the overlapping of the wall law for the variable V * and the deficiency
law found through solving Equation (IV.13) for the variable \/:—V*.

If (for a moderate fluid transfer) we disregard the variation of the
constant in the wall law with v'; » for V' we have simply the impermeable wall
law:

. "
—\4- = —_ /oje —\-)lz f5,25

Y
g (1v.14)

At small values of n the deficient velocity satisfies the logarithmic

relationship
e
‘ T (Iv.15)
where Dy is the same function of B.as in the impermeable case.
Eliminatingj}c(q%ﬂfxom (1V.14) and (IV.15) we find (IV.16)
)y av.16)

with DS, = DV+5v25

In view of the definition of the transformed variable (IV.6) we can

write:

2y g(f;f.e&ya;g'=71.za,yc(xf&s)+bx

Uy e ¥

, (Iv.17) .
a relationship which gives the friction coefficient )(f"( 9« /2 ),%,' as a function
of the rate of tramnsfer wv,/u.! and the Reynolds number for thickness §; the
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effects of B are taken into account by the constant [)X which varies with B in

the deficiency solution.

It is less urgent here than in the case of an impermeable wall to bring
" in the Reynolds number for displacement thickness. However, we find that using
* the simple definitions of the parameters we can give the friction law a form
identical to that for the impermeable case utilizing transformed quantities

~ for the friction coefficient and displacement thickness. Supposing then that:

( W;é]?-——)c@

Ty S Zer
g (7+P)4’2 Pyl

the friction law assumes the same form as Equation (III.6) for the impermeable

wall, that is to say:

2L 4 (Fon)eD"
(c‘:;).—k loge{Tog2) D" (1v.18)
with
. 7
D"=Dy~-~ 45, ()
IV.5 Results - Comparison With Experiment Z 136

IV.5.1. Velocity Profiles

Since the deficiency equation and its conditions at the limits are iden-
tical to those of an impermeable wall, the results established in Chapter III.
are usable in the case of a fluid transfer. Table I and the curves in Figure
5 give the profiles of transformed velocity from which those of physical

velocity can be deduced. Notice again that the curves of Figure 6 give only
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‘Lﬁf””‘ for the transformed variable; they are linked to friction in the
boundary layer by the formula: :

2,02 _ [ .
Lf= Tp?PURU

The experimental results to which we may compare the solution are essen-
tially only available for the case of a flat plate. To agree with our :

solution they should be regrouped along the velocity law for an impermeable

flat plate when they are shown by the variable vz-v o This is in fact the

v,
conclusion that different studies of mass injection led to, particularly the

- study by Stevenson [12].

Thus, Figure 13 shows the regrouping of Mickley and Davis's experimental ;
data [13] by Stevenson using the transformed variable of our treatment. Our

" theoretical deficiency profile for a flat plate was plotted, and its agreement
with experimental data is completely comparable to that already seen in the

case of an impermeable wall.

Unfortunately, there are no experimental results with which we can com~
pare the solution in the présence of pressure gradients. We must be content
to note that in a physical velocity profile a velocity Vs gives rise to an
effect comparable to that of positive pressure gradients, while suction gives

rise to an effect comparable to that of negative pressure gradients.
IV.5.2. Wall Fpiction

The formulas in paragraph IV.4 (and the constants in Table II) allow us
to compute the friction coefficient as a function of the Reynolds number, the
wall velocity and the pressure gradient parameter. Figure 14 shows an ekample
.! of a flat plate where the friction coefficiept is plotted as a function of the

-Reynolds number for displacement thickness, the latter for different positive

*
"

and negative values of the transfer rate.

|
‘
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- Also in the case of a flat plate

00 0S5 1 | %it was possible to make a comparison
L —_— j{ _between the present solution and ex-
\z 2l ﬁférf ES ~perimental data. It is useful in
b o - . .showing the results to use the frictiomn
; | 4 Aé? ‘%coefficient and transformed Reynolds
% . A . ' .%number which lead to a formula (IV.18)
; 6 ﬁ& : T iidentical to that for an impermeable
f' 8 /éé X S N wall. The results plotted in Figure
? % 5 15 come from experimentation by Mickley
j 4011 f and Davis [13] for blowing, and by 137
r}éﬁé{ E ( Favre, Dumas, Verollet and Coantic [14]
Ue 12 , for suction (some of the results given

by these authors for higher suction rates
. could not be used as they exceeded the
Figure 13. Law of deficient velocity 1limit /=-1 indicated above).
with injection (Flat plate).
We see that the experimental
friction coefficients can be very
- reasonably regrouped with these transformed variébles>around the law of friction

for an impermeable flat plate.
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V. BOUNDARY LAYER IN A COMPRESSIBLE FLUID

V.1l. Introduction. Preliminary'Observations

The first difficulty encountered in extension to the compressible case -
is that the equilibrium boundary layers are no longer revealed so distinctly

by experimentation.

It should be emphaéized that the technique by which we propose to seek /38

. the variables which give a logarithmic form in the turbulent region of the
~wall is essentially the definition of the deficiency variables for which the
equilibrium hypothesis will later be made in the development of the exterior

- equations.

For the velocities, we shall find that the change of variable to which
f we are led is the same as that which we used previousiy [15] in analyzing the
. experimental results concerning a flat sheet boundary layer. Based on the
 simple expression for friction by mixing length, the trapsformed‘variable for

| velocity [1l4] is introduced:
T ey
; Vi[(—e-)/zda.
- &

This variable allowed us to regroup the majority of compressible results
appreciably over the wall law and deficiency law for incompressible fluids,
the former up through high hypersonic Mach numbers. It should be noted here
that we had to select [15] the reference at the wall in order to obtain the
best return to the incompressible case. The study of tie interior boundary
layer through the following treatment confirms it rigorously by showing that
this selection is the one which allows us to be sure that the variable iq‘the:
wall law will have a universal limiting condition i’(’é’\'/’/ a’y‘&“x}fgg “_z‘F-O);‘and «

consequently to find a universal wall law.
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The study will involve dealing separately with the interior and exterior

~regions as is now to be done for velocity and enthalpy. The overlapping of the
velocity laws will lead to friction and the overlapping of the enthalpy laws
will lead to heat flux at the wall.

For the interior region, the simplification made in the equations through:
the "wall condition" will allow us to find the results for the general case of

~a compressible fluid with any given Mach number.

For the exterior region, the complete equations for momentum and energy
give rise to a complexity of development which has not yet allowed us to esta-
blish a solution for the géneral compressible case. We shall confine ourselves
in the present research to presenting the solutions and the results for the
case of low velocities. We should emphasize, however, that they will not be

- limited to fluids with constant physical properties and that they will hold

| for a boundary layer in which temperature may vary and cause significant heat :
fluxes. The simplification produced by the assumption of a low velocity is

. derived only from the fact that stagnant enthalpy and static enthalpy are
comparable.

V.2. Interior Region - Wall Laws
(General Compressible Case)

V.2.1. Wall Equations With Physical Variables

It is again obvious that the effects of fluid compressibility do not
~allow us to make further use of the universal law q*(%? and that the wall law
is not established in any event for enthalpy. Those are the hypotheses con-
cerning mixing length and the corrective function for the viscous sub-layer
_ which will let us determine the results from the natural limiting conditions:

when ;y=0°v ! (V.1)




We shall use the wall condition, that is to say, the simplified forms : [39

fé obtained by neglecting the inertia terms in the momentum and energy equations.

Considering the case of Reynolds numbers high enough that the pressure force

is also negligible, the two wall conditions are written:

2Ly |ehen 7=,
t_ 3; E i :

i
{
I

(v.2)

|
I
4
b
X

SR N e

)

C(V.3)

'
H
i

7 ‘ 1
—Mg— =0 ¢‘-‘-U'5Ff¢P° ‘

The wall equation for velocities is found by writing T as the sum of the j

" viscous and turbulent terms: ]

' ) 2 b
J : 3{ v.4)
; The turbulent term includes the corrective function Fz which depends on‘zt/qu;
because of the universal relationship assumed in the scheme. Since we are

- dealing with the neighborhood of the wall, we again grant thatv(f=k# .

The wall equation for enthalpies is found by writing ¢ as the sum of the
laminar and turbulent terms. Bringing apparent turbulent viscosity and con-
ductivity and the turbulent Prandtl numberlia-QEQ}/)C‘into the latter term,

" we have:

and consequently the wall equation is written:



- where p and U are variable and dependent on enthalpye

' | A ah JFPR*? o du
. :'_-a Y
P=-luGo %) G 2 I 9y 9y (V.5)

In what follows we shall assume that the turbulent Prandtl number is constant.

The two wall Equations (V.4) and (V.5) are clearly coupled and should be solved
2

simultaneously. We should notein particular that F2 depends on G@ fkl ou

"'Z*z A9y

V.2.2. Transformed Variables Leading to Logarithmic Laws.

We must now seek the transformed variables which give the wall laws for

velocity and enthalpy a logarithmic form when the viscous term is negligible

and the function F2 is equal to unity.

Velocities. The friction velocity{ar and the distance variable}y‘fare

formed with the wall conditiomns:

) . ol

so the change of variable which allows us to find the desired result is the

one used in [15]:

Vf (P /zdac .
fr
It allows us to write the wall Equation (V.4) in the form:

/94/ 2\/ + 3\/ :
b HZ 2Py z( ) t .

(v.6)

which, when the viscous term is negligible, gives the expected result when

F2 = l;,
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: .-%—y\{;'u.f&—" whence V'=-Z— [o}ey*r constant

Enthalpies. In the established turbulent case, the wall equation for

enthalpies becomes: )

an equation which the desired change of variables should reduce to a form with

a logarithmic solution, i.e.:

g dH e e 4,
g7 yeTT whence Hie o dogey" constant

(v.8)

(taking into account the result already obtained for velocity).

To arrive at it, we first replace static enthalpy with a kind of turbuleant
. stagnant enthalpy:

bg=he B e

(v.9)

We apply the same change of compressibility variable to it as to velocity:

T bt ovp ..
H= _'_p..)zd h‘: .
'/"‘ (F P, At‘; : (v.10)

, It is next related to a "friction enthalpy" HZ' to define the wall variable
' E,H* 'which. gives the desired logarithmic form:

YTAN A CNYVR L
5 Gty = ¢ &p (V.11)
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The complete wall Equation (V.5) is finally written:

%(Fp %{j: 3;; (!/%_ ,)uf‘a‘ u,az\//*?l ,-Afz \’_g_f*___,,. w1

It is this equation which should be solved together with (V.7) to determine

the wall laws for enthalpy and velocity. j‘} and j’ are respectively the tur-—-
bulent Prandtl number and the Prandtl number /15} /A,

V.2.3. Results for the Wall Laws.

If Equations (V.7) and (V.12) lead to the common classical logarithmic 141
form in the established turbulent case, the influence of U and p, which occurs
with the viscous terms in integration from the wall, is liable a priori to give
rise to a constant which varies with the given data (A ,»/V(A',S‘Z,) of the case which -
' may be considered. However, we may hope that the variation of the comstant will
‘remain small, since the variables V“’“andﬂH:~ are subject to well-determined . .

. limiting conditions:

f : . ’ - ]

L & + " 2

—wey0: VIR0, TR eliiie g
— for large “jé‘ : DV:: QH:.—. ! .

_ This is what we wanted to verify by establishing a program of simultan-
' eous numerical solution of Equatioms (V.7) and (V.12) and applying it to

different cases of compressibility from subsonic to hypersonic.

Two examples of results obtained shown in Figures 16a and 16b correspond
to two extreme cases. The first (M€=0'1,;-7:;,j/;,7} =0,9) is close to the conditions
with constant physical properties of the "incoﬁzpressib;e" solution. The second

. ( M‘_' ,,10, Tf—{T[;0,3Z corresponds to current test conditions in a hypersonic
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wind tunnel. Results for transformed and physical variables are shown together.

We see right away that the wall laws for physical quantities u and h are
clearly affected by compressibility. The influence is particularly marked in
the case of enthalpies: at Mc=1° h passes through a maximum, as it should

physically in a case where exterior enthalpy is less than the wall enthalpy.

The use of transformed variables changes the results conspicuously. The
~wall law for velocities is only slightly modified in the viscous sub-layer.
The wall law for enthalpies produces a logarithmic portion the constant of

o

which is influenced little by compressibility.

Overlooking these small deviations, we grant in the following that the /42

————

turbulent wall laws for velocity and enthalpy are given by the universal

- relationships:

vV._1 £ t).525

Ur ™ k foge (/“P (V.13)
H _ 1, [L%Y :

REF /age< e )+3,60 (V. 14)

V.3. Exterior Regions - Deficiency Laws
(Case of Small Velocities: Me'“ 0 )

The complexity of the development to which the complete energy and momen—
tum equations lead in compressible fluids has so far limited the treatment of
the exterior region in the case of a low velocity. The simplification is

~ brought about by the fact that the stagnant enthalpies are comparable to static
t enthalpies. For the enthalpy variable we thus have: §ﬂh‘-=/7[t =h .

We should note that the transformed variable is lthen\linke‘d directly to

physical enthalpy: ' ‘

1 o ! v

63




H'[ ”6,':—)’%4/7 = 2/7,,%'/;”"-/7,,%)"

I (V.15a)

if we assume that the gas is calorifically perfect.

Let us also recall the definition of transformed velocity:

V= (P)%du |
", (V.15b)

The technique to be used in establishing the deficiency equatlons is st111

the same, but it now involves the equations for momentum and energy.

—— The independent and dependent variables are:

S =£ . f’,_._Ve;\_/_ . o HemH |
7=s S 3 % Hp | (V.16)

— The equilibrium hypothesis is applied for the two transformed variables

e it

— Friction and heat transfer are expressed by the classical mixing
length formula, and the latter evolves according to the universal relationship
(II.3):

-gs/o[:-(_an—u)a. ¢=_F?{_ _i_\_d__a;_l.

— The hypotheses are introduced into the local equations for momentum

and energy, which are written respectively:
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To these are joined the continuity equation, and we hypothesize a perfect

gas with constant specific heats, due to which enthalpy is inversely propor-
tional to density.

Once more simplifying through the notation:

C 'az H
—— O-:'—l .
7V T, v.17)
" we shall here confine ourselves to a discussion of the order of magnitude of

the parameters, without writing out the developments which occur as factors of

the derivatives of f and g in the two equations. These parameters are:

Ve ZVZ_I-_IL\/ V. 8 Ve PF

5
- o e
POVFN T GO R IV TS W Y Ve

— Taking the case of an infinite Reynolds number, Y and 0 tend toward
- zero, The form of the relatlonshlps for friction and wall heat flux shows,

. on the other hand that - l. Ve and 5‘ Ve are on the order of y; the same is
’ V.2 Y Ve o -Ve
true for ¥>Ve” ' ' :
che

7 f
—_— -//:/iﬁ%is on the order of Mf and thus negligible at low velocities. [b4
e e

Ve §' Ve le
— Finally, we can express the parametexs Ve S and Vé ce by requiring

" the two equations integrated from 0 to 1 to satisfy 11m1t1ng conditions, par—-':

'~ ticularly at: 't‘/‘(,, = ¢/ ¢ -1 for 7 =0. With momentum and energy we find
respectively:
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| whence 7 ::-—1-4-2 3.
_—g'\—/i <6 +/—3éf=?7" +f3 T s & |
Vi\e /) Figy (V.18)

—— The only remaining parameter is that of the pressure gradient, which

it is interesting to introduce in the transformed form:

) ¥ Ve \he (v.19)

With this form we find that the momentum equation leads to a differential

equation which is the same as the one established for the incompressible case:.

V2 l_ --+_1_ 4* - '
L") =(2B 7 ) uf " 2ff

(v.20)
The energy equation leads to the differential equation:
/ n
Ery)-ae
J1 (v.21)

The corresponding limiting conditions are:

7=0 .‘7%:30:'0
71:7 :f:":g;zg;':a.

V.4. Friction and Heat Transfer at the Wall

The relationships for heat transfer and wall friction are found through
the use of the overlapping wall laws, given in their turbulent portions by the .
solution of Equations (V.20) and (V.21). The form of the equations and their
solutions show that tramnsformed deficient velocity and enthalpy are given at
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low values of n by the logarithmic equations:

Vo1, |
e =-7{-(%-§-f0\, ;,
[ (v.22)
h;’f/ 7 jﬁ
—t— ze gL+
J't)' H'c % %e 5 H (V.23)
where DV is the same function of B as in the incompressible case, since the 45

equation is the same, and where D, is a function of B which results in the
solution of (V.21).

Eliminating V /W, and H/:I?f/z.'from (Vv.13) and (V.22) on the one hand and
from (V.14) and (V.23) on the other hand, we find:

et mg Tl
Eoar e B

K-ﬁ/',/z:;-foge jul: +DO' With’ D¢=D”*3,60 .

We then introduce transformed coefficients and Reynolds number:

M, (V.24)

in order to write the preceding equations in the form of relatiomships for

the friction coefficient and the heat transfer coefficient:

e T —-(5 4/2)
, é‘) K [05‘?(‘(/%5'2{) Oy (v.25)
| (@ZZ)‘/;L {a'.(iaf 511'-4/7;&0

PG, k4 ‘5(2) ah (V.26)
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We note that the friction law in this form is the same as that we found
in the incompressible case. The same is true when using transformed displace-

ment thickness and Reynolds number:

— ) Vs K . Pve S-n
*— o — . *:‘.-—L———-
> :/b(( V)dy s !

]

- and the friction law is then written:

(___CZ_..)%:. -%- [aje ﬁ;;. +D* with :D*= DX--'/}Z- '/é]( 7‘; .
£ — . (v.27)

Finally, we define the analogy factor .Zias the ratio of the transformed

- coefficients and express it by the formula:

1. Cr . Cr \e
326 % .5 7Dy (‘é‘) | (v.28)

“with

~D,6 =DG'—DX e |

The variation of Z?;:with B.will show the influence of pressure gradients on

the analogy factor.

V.5. Presentation of Results

Since the deficiency Equation (V.20) for velocities is identical to that
for the incompressible case, the results of Chapter III are directly applicable.
Table I and Figure 5 give the profiles for transformed deficient velocity for
different values of the transformed parameter B. The friction distributions

in Figure 6 are likewise applicable to the compressible case.




. N The profiles for the enthalpy

variable g' were also found by solving
Equation (V.21) by a numerical program

| comparable to that used for velocities.

" The numerical wvalues of the transformed

—_ deficient enthalpy are also shown in
A B . ! Table I. The profiles are plotted in

é b 0 2 ' .
4 /’, o 1 Figures 17a and 17b. By using a log-
’/ o 8,58 - © arithmic scale for n, we find that the
. o T
/’ ® 0:;:0 " curves are linear for low values of N
© 020 _with a slope of 1/k.
* 00
o 0~ ! ] ¢ 2r’u
%*-005 o Heat flux T""' L f? " distribu~
% -0,10 R P . )
©-015 '+ tions are shown in Figure 18 for
© -021 i different values of the pressure grad-
-025 ' @
®,°’2y ' ient parameter. It should be pointed
0 05 _ a8 wg ! out that a singularity occurs with
. B 7 7777 reference to enthalpy at the lower
. Figure 17a. Deficient enthalpies. " limiting value E =~0,44 mentioned in
- - Chapter I1l. For this limit, we have:
g'= HG-H : .
11,250 juheng,
gg}" | F‘i- g—l

4

The solution for Equation (V.21) is‘ g ’;oa(in the entire boundary layer except
when 7 =1 where 9'=0. From that, it should be concluded that //—;;.is zero.
We emphasize that transformed enthalpy H, however, is not infinite but zero
over the entire boundary layer(# =Ico;ﬁ'§-’,téﬁ'tg‘='/;/,)‘except whenfrz'gzll where it
rejoinsH o

It is interesting to analyze the preceding results by examining the
evolution curves of enthalpy as function of velocity. Some such curves are
given in Figure 19 for the moreAeasily interpreted physical values, H/He and
V/Ve, which are linked to £' and g' by the relationships:
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 Thus, they depend through Y and g on the Reynolds number. For the example
presented, we chose a high value ( fRs =-52)000}

In the case of a flat plate ( Eaﬁ()lthe relationship is linear. The figure

70




t

O -040
0 -0,35
O=-031 «
D~=0,25
0-0,21
O-o015

. ©=0,10

© o

* 0,10
* 0,20
Q o040

- @ 0,80

@ s

(s
s

P, e o

-
b -

0o
0

10,28

0,50 0,75 >

AY

Ve

" A =035

® =040 .

Figure 19. Enthalpy~velocity profiles. fi{;"-sbboo o

71




~shows that the pressure gradients have a considerable influence on the

enthalpy-velocity relationship.

We can see that B is the product of (/7/, /he)yf and a term more especially .
characteristic of the pressure gradient. Decreasing hp makes the absolute
value of B decrease and brings the curves closer to that of the flat plate:
the effect of the pressure gradients is less, the colder the wall is. These
results are likened to those for a laminar boundary layer set up in particular-

by similar solutions by Cohen and Reshotko [16].

Finally, Figure 20 shows the variation in the analogy factor s with B
for different values of the Reynolds number. Formula (V.28) shows that o
depends on the Reynolds number through C-‘}% and thus varies slowly With fTZaé. It
depends on the pressure gradient through the constant 10.535_ and on the other

hand varies considerably with B.

For a flat plate D, is quite small in order that the analogy factor will
not differ much from 3 =1/ ¢éf The negative pressure gradients cause a decrease
in the analogy factof, 8 becoming zero at the lower limit 3 ==-'07,44 . The
positive pressure gradients cause an increase in _:5 which becomes infinite at

' separation, where friction is zero when heat flux is not. It is likewise clear,
~in view of the definition of 'B-?‘;that the effect of the pressure gradients om

the analogy factor is less,the colder the wall.
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VI. FINAL OBSERVATIONS AND CONCLUSIONS 49

The criticism that can be made of the propésed treatment is that the
separation into exterior and interior regions assumes that the established
turbulent conditions are in fact attained when the overlapping of the wall law
and the deficiency law comes into play. In fact, we can find important cases
where this condition is not satisfied and where the principle of separation
into two regiomns is noﬁ applicable. It is interesting to dwell on this point
as the hypothesis for the viscous sublayer corrective function allows us to
make some interesting observations on what might be the behavior in such cases

of turbulent friction.

In Paragraph II.1l.3 we saw that the ratio of turbulent friction to laminar
friction can be related to total friction and mixing length through the

formula:

The formula shows that 7, /7, is zero at the wall (. =0) as is normal,
but it is important to note that 7; /T, can also become zero at a distance

from the wall if total friction itself tends toward zero.

This is what was found when calculating the interior region with strong
suction when the wall condition was 7 = 7) P YU with a negative Vp, causing
total friction to decrease and tend toward zero. Figure 21 shows the results
obtained for 7;/7, by solving the wall Equation (IV.3) for different values
of the fluid transfer rate. We see that for moderate blowing or suction,

7, /7, reaches quite high values, so that the established turbulent conditions E
may be regarded as actually attained. At velocities v}r lower than -0,07,0n

the other hand, turbulent. friction reaches only much lower.values. In the

case of strong suction, we are faced with, 6 a veritable laminarization of the - /50

entire interior region. , o C
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Because it is linked to the rapid decrease in total friction, the phen~

omenon should likewise be produced by strong negative pressure gradients, if

the Reynolds number is not too high.

Aside from these special cases, for which the proposed scheme appears in

need of further clarification, we can conclude that the improved hypotheses of

the mixing length concept have ‘allowed us to end up with some coherent results

for a whole range of turbulent boundary layer problems.

Their application to equilibrium boundary layers was interesting in that
it showed in a systematic manner the effects of the principal factors which

may come into play in the problems.

We should emphasize that it allowed us to find results hitherto not avail-
able on boundary layers with fluid transfer at the wall in the presence of

pressure gradients.

In a compressible fluid, much work still remains to be done to give
results for the general case for any Mach number. It is unlikely, however,
that the conclusions will be fundamentally different from those shown by the

present research at low speeds.

We should, henceforth, insist on the fact that the effects of pressure
~ gradients are at least as important in the thermal boundary layer as in the

dynamic boundary layer.

The results established for the enthalpy-velocity relationship and the
_ analogy factor are altogether comparable to. theose of similar solutiomns for

7

laminar boundary layers.

R b [ [N VINEIY Vo O LA VO
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Table la!

y E_@_ -0.442 =0.40 ~0.35 ~0.31 -~ 0,25 -0.21
b H H ) 1]
X | ¢ | 9 f o’ f | ¢ f g’ f g
© ? (-] © © Q 0 © © © 0 ©
0.0 10 13,529 13.80 152.66 14.18  66.03 14.47 49,12 15.07 34.61 15.49  29.&6
°'83;z 11.735 12.00 150.83 12.38 64.21 12.67  47.30 13.27 32.78 13.69 28.04
3'003, 10.638 10.91 149.69 11.28  63.08 11.57 46417 12.16 31.66 12.58 26.92
0.0049 9.828 10.09 148.85 10.47 62.23 10.75 45,32 11.35 30.82 11.76 26.0&
0. 0064 9.173 9.44 148.15 9.8l 61.54 10.09 44,63 10.69 30,13 11.10  25.39
06062 5577 o 8.88 147.56 9.25  60.94 | 9.53 " %5.04 10.12 79.5% T0.54 " 24.E7
0.0100 8.129 .39 147.02 8.76 60.41 9.04 43,51 9.63 29.01 10.04  24.28
0.0121 7.690 7.95 146.54 Be32 59.93 B.59  43.03 9.18  28.54 9.59  23.81
0.0145 72.289 7.55 146.09 7.91 59.48 6.19 42.58 8.77 28.09 9.1  23.37
0.0170 6.918 T.17 145.66 7.4 59.06 7.81  42.16 6.39 27.68 8.80 22.95
0.019¢ 6.572 6.83  145.26 7.19  58.66 .46 41,76 8.03 27.28 B.44  22.56
0.0230 5.245 o 6.50 144.87 6.66 5B.27 7.13  41.38 7.70  26.91 8.10 22.19
0.0264 5.935 618 144.49 6.54 57.90 6.81 41.01 7438  26.54 7.77 21.83
0.0302 5,640 5.89 144.13 624 S5T.54 6.51 40,65 7.07  26.19 7.46  21.48
0.0364 5.357 5.60 143,77 5.95 57.18 6.22  40.30 6.77 25.84 7.17  21.13
0.0391 5.085 5.33 143,41 5.68 56.83 5.94  39.9% 6.49  25.50 6.88  20.80
0.0442 4,824 5.06 143.06 Yehl 56449 5.67 39.61 C6.21  25.17 6.60 20.47
0.0499 4571 © 4.81 142.71 5.15  56.14 5.40  39.27 5.95  24.B83 6-33 20.14
0.0561 §.326 4e56 14236 4.90 55.80 5.15  38.93 5.69 24,50 6.07 19.82
0.0630 4,089 4.32 142.01 4.65 55.45 4.90  38.59 5.43 24,17 5.81 19.49
0.0707 3.859 4.09 141.65 4.41  55.11 4,66  38.25 5.19  23.84 5.56 19.17
0.0791 3.635 3.86 141.29 4,18 54,75 4,42  37.90 4.94 23.51 5.31  18.84
0.0884 3.417 3.64 140.92 3095 54440 4.19 37.55% 4,70 23.17 5.07 18e51
0.0587 3.20% ) 3.42  140.55 3,73 54.03 3,97 37.19 4,47 22.83 4.83  18.18
0.t101 2.996 3.21 140.16 3.51  53.65 3.74 36.82 4,24  22.48 4.59 17.t4%
0.1227 2.792 3.00 139.75 3.30 53,26 3.53 36.44 4,01 22.12 4.35 17.49
0.1366 2.593 2.80 139.33 3.09  52.86 3.31  36.05 3.79  21.74 4,12  17.13
0.1519 2.398 2.60 138.88 2.88 52.43 3.10  35.63 3.56 2135 3.89 1676
0.1668 2.206 2.40 138.41 2.68 51497 2.89 35,20 3.34  20.95 3.66 16.37
0.1875 2.018 © 2.20 137.69 241  51.49 2.68  34.713 3.12 20.52 3.43  15.90
0.2082 1.832 2.01 137.34 2.27 50.97 2.47 34,23 2.89 20.06 3.20 15.53
0.2310 1,650 1.82 136.73 2.07 50.39 2.26  33.68 2.67  19.56 2.96 15.06
0.2562 1.470 1.63 136.04 1.87 49,76 2.05 33.08 2.45 19.02 2.73 14.56
0.2841 1.294 1.45 135.27 1.67 49.05 1.85  32.42 2.22  18.43 2.49  14.02
10,3149 1.122 1.27 134.38 1.48  48.24 1.64  31.66 1.99  17.78 2.25 13.42
0.3488 0.954 ) 1.09 133.35 1.28  47.31 1.4  30.80 1.77 17.04 2.00 12.76
0.3864 0.792 0.91 132.11 1.09  46.22 1.23  29.81 1.54 16.21 1.75 12.01
0.4279 0.638 0.75 130.60 0.91  44.92 1.03 28.63 1.31 15.26 1.5 11.18
0.4737 0.494 0.59 128.71 0.73  43.34 0.84 27.24 1.08  14.15 1.26 10.23
0.5243 0.363% 0.44 126.29 Ce56  41.37 0.66 25.54 0.86 12.87 1.02 9.15
0.5802 0.248 0.31 123.07 0.41 38,67 0.49 23.44 0.66 11.37 0.78 7.92
0.6419 0.15% © 0.20 118.586 0.28 35.60 0.33  20.81 0. 406 9.60 0.56 5.52
0.7101 0.081 0.11 111.93 0.16 31.19 0.20 1T.45 0.29 7.53 0.36 4.96
0.7854 0.033 0.05 101.12 0.08  25.00 0.10 13.10 0.16 5.17 0.19 3.27
0.8667 0.007 0.01 80.81 0.03 15.99 0.03 T.54 0.06 2.60 0.07 1.56
0.9606 0.000 © 0.00 31.26 0.00 3.51 0.00 1.36 0.00 0.3€ 0.01 0.21
1.0000 0.0 0.0 0.0 0.0 C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Velocity and deficient enthalpies:.
i
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2 —0.15 —~0.10 -0.05 0.0 0.10 0.20
B :
y []
%{ ¢ g’ § g’ f g’ f g’ f a’ - f’ g’
© © © © © © © © © ) © @0

9.9 o 16-17  25+41 16.81 22.83 17.59  20.75 18.48  19.11 20.58  16.67 23.12 14.91
‘“'“lz 14.36 23.59 | 15.01 21.01 15.78  18.93 16.67 17.30 18.76  14.87 21.29  13.11
;°§,75 13.26  22.47 13.90 19.89 14.67 17.82 15.55  16.18 17.64  13.T6 20.17  12.02
;-**29 12.43 21.63 13.08 19.05 13.85  16.99 14.73  15.35 16.81 12.94 19.32 11.20
HPIPP 11.77  20.95 12.41  18.37 13.18  16.31 14.05  14.68 16.13 12.27 18.64  10.55
,,éng 11.20  20-36 11.84 17.79 1260 15.73 13.48  14.10 15.55 11.70 18.05 9.99
218160 10.70- 19.84 11.33  17.27 12.10 15.22 12.97  13.59 15.03  11.20 17.52 9.50
Zoeisr | 10.25  19.37 | 10.88  16.81 | 11.64 14.75 | 12.51 13.13 | 14.56 10.75 | 17.04  9.06
2.6145 9.83 18.93 10.46 16,37 11.22  14.32 12.08  12.71 14.13  10.34 16.60 8.6%
S 6110 9.45 18.53 10.07  15.97 10.83  13.92 11.69 12.31 13.72 9.95 16.18 8.26
£, 6195 9.09 18.14 9.71  15.59 10.46  13.5%4 11.31 11.94 13.34 9.59 15.79 7.93
140230 8.74 17.77 9.36 15.22 10.11  13.18 10.96 11.58 12.98 9.25 15.41 7.60
Yo E2L4 8.42 17.41 9.03  14.87 9.77 12.84% 10.62 11.24 12.63 8.92 15.04 7.29
8302 6.10 17.07 8.72 14.53 9.45 12.50 10.29  10.92 12.29 8.60 14.69 7.00
2. 6344 7.80 16.73 8.41 14.20 9.14 12.18 9.98 10.60 11.96 8.30 14034 6-71
N3t 7.51  16.40 8.11 13.88 8.84 11.86 9.67 .10.29 11.64 8.01 14.00 6.44
T, 442 7.23  16.08 7.82 13.56 6.55 11.55 9.37 9.99 11.32 7.73 13.66 6.17
£.0499 6.95 15.76 7.54 13.25 8.26 11.25 9.0¢ 9.70 11.01 7.45 13,33 5.92
1,851 6.68  15.45 7.27  12.9% 7.98 10.95 8.79 9.41 10.70 7.18 13.00 5.67
5, 0530 6.42 15.13 7.00 12.63 7.70 10.65 8.50 9.12 10.40 6492 12.67 5.43
$.6707 6.16  14.82 673 12.33 7.43  10.36 8.22 8. 84 10.10 6.66 12.35 5.20
140191 5.90  14.50 6.47 12.03 7.16 10.07 7.94 8.56 9.80 6.41 12.02 4.97
PR 5.65 14.19 6.21 11.72 6.89 9.78 7.67 £.2¢ 9.50 6.15 11.68 4. 75
TS 5.40  13.87 5.96 11.41 6.63 9.48 7.39 8.00 9.19 5.91 11.35 4.53
2. 410} 5.16 13.54 5.70 11.10 6.36 9.19 7.11 7.72 8.89 5466 11.00 4.32
$.9227 4.91 13.21 5¢45 10.79 6+10 8.89 6084 Te44 8.98 5.42 10.66 4,11
Sel3se 4.67T 12.88 5.20 10.47 5.83 8.59 6.56 7.16 8.27 5.17 10.30 3.90
221519 4.43  12.53 4.94 10.14 5.57 8.28 6.28 6.87 7.95 4.93 9.93 3.69
T 4,18 12.16 4.69 9.80 5.30 1.97 5.99 6.58 7.62 4.68 9.55 3.49
Yo 4875 3.94  11.79 4.43 9.45 5.02 7.64 5.70 6.28 7.28 4.43 9.16 3.28
2082 3.69  11.39 4.17 9.08 474 7.31 5. 40 5.98 6.93 &.18 8.74 _3.08
%2310 3.44 10.97 3.90 8.69 4446 6.95 5,09 5.66 6.56 3.93 8.31 2.87
2542 3.19 10.52 3.63 8.29 4.16 6.59 4.77 5.33 6.16 3.67 7.65 2. 606
Tedes] 2.93 10.04 3.35 71.85 3.86 6.20 4,43 4,99 5.78 3.40 7.37 2.45%
3149 2.66 9.51 3.06  7.38 3.54 5.79 4.08 4.63 5.36 3.12 685 2.24
Z.3428 2.39 8.94 2.76 6.88 3.21 5.35 3.72 4.25 4.91 2.84 6.29 2.02
Yed2e4 2.11 8.31 2.46 634 2.87 4.89 3.34 3.85 4.43 2.54 5.7C 1.80
$.6209 1.83 7.62 2.14 5.75 2.52 4.39 2.94 3.43 3.93 2.24 5.07 1.57
28137 .55 6.55 1.82 5.11 2.15 3.86 2.53 2.99 3.40 1.93 4.40 1.35
§a$;£3 1.26 6.01 1.50 4.42 i1.78 3.30 2.10 2.53 2.84 1.61 3.70 1.12
;-ziﬁz 0.98 5,08 1.18 3.68 1.41 2.71 1.67 2.06 2.27 1.29 2.97 0.69
¥f§a§° 0.72 4.07 0.86 2.89 1.04 2.10 1.24 1.58 1.70 0.97 2.24 0. 60
%‘!asi 0.47 2.99 0.57 2.08 0.70 1.49 0.84 1.10 1.15 0.67 1.52 0.45
Sleeny 0.26 1.89 0.32 1.26 0.39 0.90 0.47 0.66 0.65 0.39 0.86 0.26
i) 0.10 0.86 0.12 0.57 0.15 0.39 0.18 0.2¢ 0.25 0.17 0.34 0.11
Hd 0.01 0.11 0.01 0.07 G.01 0.05% 0.02 0.03 0.02 0.0? 0.03 0.0l

--to 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0..0

iTable 1b. Velocity and deficient enthalpies.




E*’ 0.30 0.40 050 0.60 059 0.80
] $

%;& f! g’ f’ g) f’ g’ f g’ f’ g, f g’
" o © © © © © © © © © o ©
;-39,0 25.98  13.59 29.25  12.49 32.65 11.62 36.32  10.86 39.91  10.25 43.93 9.66
. 8522 24.14 11.80 27.41  10.72 30.60 9.86 34.45 9.11 38.02 8.51 42.03 7.94
s g535 | 23.01  10.71 26426 9.64 29.64 B.79 33.27 8.07 36.83 7.48 40.82 6.93
ioepie | 22016 9.91 25.40 8.85 28.76 8.01 32.38 7.30 35.92 6.73 |- 39.88 6.20
3.0064 21.46 9.26 24.69 8.22 28.03 7.40 31.66 6.70 35.16 6.15 39.10 5.63
2.6062 20.56 8.72 24.07 7.68 27.40 6.88 30.98 6.20 34.49 5.66 38.40 5.16

5,6306 | 20.32 8.24 23.52 7.22 26.83 6.43 30.40 5.76 33.88 5.24 37.77 4.76
20121 19.€3 7.81 23.01 6-80 26.31 6.03 29.85 5.38 33.31 4.88 37.17 4.42
POPePRe 19.37 7.42 22.54 6.43 25.61 5.67 29.33 5.04 32.77 4.55 36.60 4.11
2,8110 18.94 7.06 22.09 6.09 25.34 5.35 28.84 4.74 32.25 4.26 36.05 3.63
5,01 9L 16.53 6.73 21.66 5.77 24.89 5.05 28.36 4.45 31.74 4.00 35.52 3.59
5,0230 16.13 6.42 21.24 5.48 24.45 4.77 27.89 4.19 | 31.2% 3.75 34.99 3.36
2.0264 17.75 6.12 20.83 5.20 2402 4.51 27443 3.95 30.75 3.53 3446 3.1%
5.0302 17.37 5.84 20.43 4.94 23.59 4.27 26.97 3.73 30.27 3.32 33.93 2.96
5.0344 17.01 5.58 20,04 4,70 23.17 4.04 26.52 3.52 29.78 3.13 33.41 2.78
8.0391 16.64 5.32 19.65 4.46 22.75 3.83 26.06 3.33 29.28 2.95 32.87 2.62
5.0442 16.28 5.08 19.26 4.24 22.33 3.63 25.60 3.14 28.79 2.78 32.33 2.46
2.0499 15.93 4.85 18.87 4.03 21.90 3.44 25.14 2.97 28.28 2.62 31.78 2.32
50561 15.57 4062 18.48 3.83 21.47 3.25 24,67 2.80 27.77 2.47 31.22 2.18
3,0430 15.21 4.40 18.08 3.63 21.03 3.08 24.18 2.65 27.24 2.33 30.64 2.05
5.0107 14.85 4.20 17.68 3.45 20.59.  2.91 23.69 2.50 26.70 2.20 30.05 1.93
5.6791 14.48 3.99 17.28 3.27 20.14 2.76 23.19 z.36 26.15 2.07 29,44 1.82
7.0884 14.11  3.80 16.86 3.10 19.67 2.60 | 22.67 2.22 25.58 1.95 28.81 1.71
240987 13.74 3.61 16.43 2.93 19.20 2.46 22.14 2.10 24.99 1.83 28.15 1.61
0.1101 13.35 3.42 16.00 2.77 18.70 2.32 21.59 1.97 24,37 1.72 27.47 1.51
5.1227 12.95 3.24 15.55 2.62 16.19 2.18 21.01 1.86 23.73 1.62 26.76 1.42
3.1366 12.55 3.06 15.08°  2.46 17.66 2.05 20.41 1.74 23.07 1.52 26.01 1.33
5.1519 12.12 2.89 14.59 2.32 17.11 1.93 19.78 1.63 22436 142 25.23 1.24
G.1688 11.68 2.72° | 14.08 2.17 16.52 1.80 19.12 1.52 21.62 1.33 24,40 1.16
0.1875 | 11.22 2.55 13.54 2.03 15.91 1.68 18.41 1.42 20.84 1.23 23.52 1.08
0.2082 10.74 2.38 | 12.98 1.89 15.25 1.56 17.67 1.32 20.00 1.14 22.58 1.00
0.2310 10.23 2.21 12,37 1.75 14.56 1.45 16.87 1.22 19.10 1.06 21.58 0.92
0.2562 9.68 2.04 11.73 1.61 13.81 1.33 16.02 1.12 18.14 0.97 20.50 0.84
G.2841 9.10 1.87 11.04 1.48 13.01 1.21 15.09 1.02 17.10 0.83 19.33 0.77
0.3149 6.48 1.70 10.30 1.34 12.14 1.10 14.10 0.92 15.98 0.80 18.07 0.69
0.3488, 7.81 1.53 9.50 1.20 11.21 0.98 13.02 0.82 14.76 0.71 16.69 0.62
0.3864 7.09 1.36 8.63 1.06 10.20 0.87 11.85 0.73 13.44 0.63 15.21 0.55
0.4279 6.32 1.18 7.71 0.92 9.11 0.75 10.59 0.63 12.02 0.54 13.60 047
0.4737 5+50 1.01 - 6.71 0.78 1.94 0.64 9.2¢4 0453 10.49 0.46 11.87 0.40
0.5243 4.63 0.83 5.66 0. 64 6.70 0.52 7.80 0.44 8.85 0.38 10.02 0.33
8-2202 3.73 0.066 4,56 0.51 5.40 0.41 6.29 0.34 7.15 0.30 8.09 0.26
0-7139 2.¢1 0.49 3.44 0.38 4.08 0.31 4.75 0.25 5.40 0.22 6.12 0.19
o 1 1.91 0.33 2.34 0.26 2.78 0.21 3.24 0.17 3.69 0.15 4.17 0.13
0-8654 l.C9 0.19 1.34 0.15 1.59 0.12 1.85 0.10 2.11 0.09 | 2.39 0.07
0'9687 0.43 0.08 0.52 0.06 0.62 0.05 0.73 0.04 0.83 0.03 0.94 0.03
o 0o 0.04 0.01 0.0% 0.01 0.06 0.01 0.07 0.00 0.0& 0.00 0.09 0.00
| 1-000C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

'Table lc.. Velocity and deficient enthalpiesl.
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0.0050 47.93 9.15 05193 8.71 12.72 7.01 94,37 5.84 113.02 5.10 138.17 4.35
0,0022 46,01 T.46 49.98 7.03 70.63 5.45 92.09 4.41 110.56 3.78 135.44 3.16

0.0035 | 44.7T  6.46 48.73 6.06 69.22 4.57 90.51 3.64 | 108.81 3.08 | 133.43 2.55
9.0049 | 43.82 5.75 47.74 5.37 68.10 3.98 | 89.20 3.12 |107.33 2.63 | 131.72 2.16
0.0064 | 43.01 5.20 46.91 4.83 67.11 3.53 88.04 2.74 |106.00 2.30 |130.15 1.89
0.0062 | 42.29  4.75 | 46.16 4440 66.21 3.17 86.95 2.45 |104.75 2.05 |128.67 1.67
0.0100 | 41.63  4.37 | 45.47  4.03 65.36 2.88 85.92 2.21 |103.54 1.84 |127.23 1.50
0.0121 | 41.00  4.04 44.82 - 3.72 64.54  2.63 84.91 2.01 |102.36 1.67 | 125.81 1.36
0.0145 | 40.40 3.75 44.19 3.44 63.73 2.42 83.91 1.84 |[101.19 1.53 | 124.40 1.24
0.0170 | 39.82 3.49 43.58 3.20 62.94  2.23 82.92 1.69 |100.02 1.40 | 122.99 le14
0.0198 | 39.25 3.25 | 42.98 2.98 62415 2.06 81.92 1.56 98.84 1.29 | 121.56 1.05
0.0230 | 38.69 3.04 | 42.38  2.78 61.36 1.92 80.91 1.45 97.65 1.20 |120.11 0.97
0.0264 | 38.13  2.85 41.78 2.60 60.55 1.78 79.89 1.35 96.43 1.11 [ 118.63 6.90
0.0302 | 37.56  2.67 41.17  2.43 59.74 1.66 78.85 1.25 95.19 1.03 | 117.12 0.84
0.0344 | 36.99  2.50 40.56 2.28 58.91°  1.55 77.78 1.17 93.92 0.96 |115.57 0.78
0.0391 36.42 2435 39.94 2.14 58.06 1.45 76469 1.09 92.61 0.90 | 113.97 0.73
0.0442 | 35.83  2.21 39.31 2.01 57.19 1.36 75.56 1.02 91.26 0.84 | 112.33 0.68
0.0499 | 35.23  2.08 38.67 1.88 56.29 1.27 14.40 0.95 89.87 0.76 | 110.62 0.63
0.0561 34,62 1.95 38.01 1.77 55.37 1.19 73.20 0.89 | 88.43 0.73 |108.86  0.59
0.0630 | 33.99 1.84 37.33 1.66 | S54.41 1.12 71.95 0.84 86494 0.69 |107.03 0.55
0.0707 | 33.35 1.73 | 36.63 1.56 53443 1.05 70.66 0.78 85.39 0.64 |105.13 0.52
0.0791 | 32.68 1.63 35.90 1.47 | 52.40  0.98 | 69.32 0.73 83.77 0.60 |103.15 0.49
0.0684 | 31.99 1.53 35.15 1.38 51.33  0.92 67.92 0.69 82.09 0.56 |101.08  0.46
9.0987 | 31.27 1.44 | 34.37 1.30 50.21 0.86 66446 0.64 | 80.33 0.53 98.92 0.43
0.1101 30.52 1.35 33.55 1.22 49.04 0.81 64.92 0.60 78.48 0.49 96465 0.40
8.1221 | 29.74 1.26- | 32.70 114 47.82 0.76 63.31 0.56 | 76.54 046 94027 0.37
6.1366 | 28.92 1.18 31.80 1.07 | 46.53  0.T1L 61.61 0.53 14449 0.43 91.75 0.35
9.1519 | 28.05 1.10 30.85 1.00 45.16  0.66 59.82 0.49 12.32 0.40 89.08 0.32
0.1686 | 27.14 1.03 | 29.85 0.93 | 43.71 0.62 57.91 0.46 70.02 0.38 86.25  0.30
0.1875 | 26.16  0.96 28.78 0.86 42.17  0.57 55.87 0.42 67.56 0.35 83.23  0.28
0.2082 | 25.12 0.89 27.65  0.80 40.52 0.53 53.69 0.39 6493 0.32 79.99  0.26
0.2310 | 24.01 0.82 26442 0.74 38.74 0.49 51.35 0.36 62.10 0.30 76.50 0.24
0.2562 | 22.81 0.75 | 25.11 0.67 36.63  0.45 | '48.82 0.33 59.04 0.27 72.74  0.22
0.2841 | 21.52  0.68 23.69 0.61 34.76 0.41 46.07 0.30 55.73 0.25 68.66  0.20
©.3149 | 20.11 0.62 22.15  0.55 32.51 0.37 43.10 0.27 52.13 0.22 64.23  0.18
0.3488 | 18.59  0.55 | 20.47 0.49 30.06  0.33 39.86 0.24 | 48.21 0.20 59. 41 0.16
0-3864 | 16.94  0.48 18.65 0.43 27.40  0.29 36.33 0.21 43.95 0.17 54.16  0.14
0.4279 | 15.15  0.42 16.68  0.38 24.51 0.25 32.51 0.18 39.33 0.15 48.47  0.12
0.4737 | 13.22  0.35 14.56  0.32 21.41 0.21 28.40 0.15 34.35 0.13 | %2.3¢  0.10
0.5243 | 11.17  0.29 12.30 0.26 | 18.09 0.17 24.00 0.13 29.04 0.10 35.79 0.08

3-5802 9.02 0.23 9.94% 0.20 14.61 0.13 19.39 0.10 23.46 0.08 28.91 0.07
oogté: 6.82 0.17 7.51 0.15 11.05 0.10 14.67 0.07 17.75 0.06 21.87 0.05
°°,854 4.65 0.11 5.13 0.10 7.55 0.07 10.02 0.05 12.12 0.04 14.94 0.03
'0.8687 2.66 0.07 2.93 0.06 4.32 0.04 5.73 0.03 6.94 0.02 8.55 0.02
0.9605 1.04 0.03 1.15 0.02 1.70 0.02 2.25 0.01 | 2.72 0.01 3.36 0.01
‘.00 0.10 0.00 0.11 0.00 Oel6 0.00 0.21 0.00 0.26 0.00 0.32 0.00
—_ 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

};ir;b'ig 1d. Velocity and deficient enthalpies. .



§¢ 4,00 5.00 6.00 6.99 7.99 10.00
) y ' ] 4 ’ ’ ’ 5 § s
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6.0 L) © © © © © © 0 0 © © 0
0.0010 182,78 3. 44 227.63 2.83 272.54 2.39 317.17 2.08 362.00 1.83 452.79 1.47
10.0022 179.52 2.44% 223.80 1.98 268.10 1.66 312.12 1.43 356.32 1.26 445.82 1.01
40.0035 177.04 1.95 220.81 1.57 264 .60 1.32 308.10 1.13 351.77 0.99 440.18 0.80
0-.0049 174.87 1.64 218.18 1.32 261.49 1.11 304,51 D.95 347,69 0.83 435,12 0.67
10.0064 172.87 1.43 215.73 1.15 258.59 0.96 301.15 0.82 343.86 0.72 430.37 0.57
0.0082 170.96 1.26 213.38 1.01 255.80 0.84 297.92 0.72 340.20 0.63 425.78 0.51
0.0100 169.10 1.13 211.09 0.91 253.07 0.75 294.75 0.65 336.59 0.57 421.28 045
0.0121 167.26 1.02 208.81 0.82 25036 0.68 291.60 0.58 333.00 0.51 416.81 0.41
0.0145 165.42 0.93 206.54 0.75 24T.64 0.62 288.45 0.53 329.41 0.47 412,32 0.37
0.0170 163.57 0.85 204.24 0.68 244.90 0.57 285,27 0.49 325.7b 0.43 407.76 0. 34
0.019¢ 161.69 0.79 201.92 0.63 242.12 0.52 282.04 0445 322.10 0.39 403.18 0.31
0.0230 159.79 0.73 199.55 0.58 239.29 0.48 278.75 0.41 318.35 0.36 398.49 0.29
0.0264% 157.84 0.67 197.13 0.54 236040 0.45 275.38 0.38 314.51 0.33 393.69 0.27
0.0302 155085 0.62 194465 0.50 233.43 0.41 271.93 0.36 310.57 0.31 388.77 0.25%
0.0344 153.80 0.58 192.10 0.46 230.38 0.39 268,38 0.33 306.52 0.29 383.70 0.23
0.0391 151.69 0.54 189.47 0.43 227.24 0.36 264.72 0.31 302.34 0.27 378.47 0.21
0.0442 149.51 0.51 186.76 0.40 223.99 0.34 260.94 0.29 298.02 0.25 373.07 0.20
0.0499 147.26 0.47 183.95 0.38 220062 0.31 25702 0.27 29355 0.23 36748 0.19
0.0561 144.92 0.44 181.04 0.35 21714 0.29 252.96 0.25 288.92 0.22 361.68 0.18
0.0630 142,50 0.41 178.02 0.33 213.51 0.27 248.75 0.23 284.10 0.21 355,66 0.1lo
10,0707 139.97 0.39 174.87 0.31 209.75 0.26 244436 0.22 279.09 0.19 349.39 0.15
0.0791 137.35 0.36 171.60 0.29 205.82 0.24 239.78 0.21 273.87 0.18 342.85 0.14
0.0884 134.60 0.34 168.17 0.27 201.71 0.23 235.00 0.19 268+41 0.17 336.03 0.13
400987 131.73 0.32 164.59 0.25 197.42 0.21 230.00 0.18 262.70 0.16 328.87 0.13
§0.1101 128,71 " 0.30 160.82 0.24 192.91 0.20 224.75 0.17 256,70 0.15 321.37 0.12
10,1227 125.54 0.28 156.87 0.22 188.16 0.18 219.22 0.16 250.39 0.14 313.46 0.11
0.1366 122.20 0.26 152.69 0.21 183.15 0.17 213.38 0.15 243.72 0.13 305.12 0,10
0.1519 18.65 0.24 148.26 0.19 177.8% 0.16 207.20 0.14 236466 0.12 296<28 0.10
0.1688 114.88 0.23 143.55 0.18 172.20 0.15 2004 62 0.13 229.15 0.11 286.88 0.09
0.1875 110.86 0.21 138,53 0.17 166.17 0.14 193.61 0.12 221.14 0.10 276.85 0.0b6
0.2082 106.55 0.19 133.15% 0.15 159.72 " 0.13 186.09 0.11 212.55 0.10 266.10 0.08
0.2310 101.91 0.18 127.35 0.14 152.77 0.12 178.00 0.10 203.31 0.09 254.53 0.C7
0.2562 96.90 0.16 121.10 0.13 145.26 O.11 169.25 0.09 193.32 0.08 242.03 0.06
0.2841 9147 0.15 114.31 0.12 137.13 0.10 159.77 0.08 182.50 0.07 228.48 0.06
0.3149 85.57 0.13 106.94 0.11 128.28 0.09 149.47 0.08 170.73 0.07 213.74 0.05
0.3488 79.15 0.12 98.91 0.09 118.66 0.08 136.25 0.07 157.92 0.06 197. 71 0.05
0.3864 72.16 0.10 90.18 0.08 108.19 0.07 126.05 0,06 143.98 0.05 180.26 0.04
0.4279 64,58 0.09 80.71 0.07 96.83 0.06 112.82 0.05 128.86 0.04% 161.34 0.04%
04737 5641 0.08 7050 0.06 8457 0.05 98. 54 0.04 112.56 0.04 140.92 0.03
§0-5243 47,69 0.06 59.60 0.05 71.50 0.04 83.31 0.04 95.16 0.03 119.14 0.02
§0.5802 38.53 0.05 48.15 0.04 5T.77 0.03 67.31 0.03 76.88 06.02 96.26 0.02
0.6419 29.15 0.04 36.43 0.03 43.71 0.02 50.93 0.02 58,17 0.02 72.83 0.01
0.7101 19.91 0.02 24.89 0.02 29.86. 0.02 34.79 0.01 39.74 001 £9. 76 0.01
3'7854 11.40 0.01 14.25 0.01 17.09 0.01 19.92 0.01 2215 0.01 28.48 0.01
0'3237 447 Q.01 5.59 0.00 6.71 0.00 7.82 0.00 8.93 0.00 11.18 0.00
1:0008 0.42 0.00 0.53 0.00 0.64 0.00 0.74 0.00 0.85 0.00 1.06 0.00
L. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table le. Velocity and deficient enthalpies.
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-0 k2 2.03 @ 1e13 © 3.77 1 O 0.16
«C 0 - 2.30 | 139.51 1.23 §1115.29 3.84 1 0.01 0.17
=0.35 | 2.691 52.89 | 1.38 | 37.72 3.97 | 0.03 0.19
“0e31 = 2,97 | 35.98 | 1.49 | 23.88 4,07 | 0.04 0.20
=0.25 3.57 1 21.47 1.73 | 12.95 L.32 ] 0.09 0.23
«0.21 L,00% 16.72 1.90 9.72 4.51] 0.12 0.26
~0.15 L.67 ¢ '12.26 2.18 6.91 4,85 0.16 0.30 .
=010 5«32 | . 9.68 2.45 5043 5«19 | 0.22 0.35
«0.05 6.10 7.61 2.78 .33 5.62 1 0.26 Ol
0. 698 - 5.96 3.15 354 6.13 ] 0.32 0.48 .
0.10 9.09 3.53 4,01 2.50 7.391 0.45 0.70
0.20 . C11.62 1.76 5.03% 1,88 8.94% | 0.60 1.03
0.30 14,48 044 6.15 1.48 | 10.58} 0.76 1.48
0.40 17.76 | «0.65 7.40 1.20 | 12.66§ 0.93 2.09
0650 21416 | =152 8.68 1.01 { 4.71) 1.1 2.83
L0.60 2k.821 -2.29 | 10.03 Q.37 1 16.89 1 1.30 3.75
0469 28.41 ] =2.90_] 11.34 0.76 | 19.01 1.48 4,76
"0.80° 32,44 1 =3.49 | 12.79 0.67 §F 21.37 ) 1.67 6.02
1 0.90 3644 § -3.99 1 14,22 0.60 § 23.691 1.87 7.42
1,00 Lokt | <4 .43 § 15.63 }. 0.55 | 26.01 ] 2.06 8.95
1.50 61.22 8§ -6.14 § 22.87 | 0.37 1 37.87 1 3.03% 19.05
2.00 82,87 F ~=7.31§ 30.28 0.28 § 50,05 &.03 ] 33.33%
2.42 101.52§ =8.05 | 36.61 0.23 0 60,46 % 4.87 1 48.67
- 4,00 171.28 | =9.71 ] 60.05 | 0.14% | 99.05} 8.01] 130.80
5.00 216,14 | =10.31 | 75.03 0.11 ] 123.73 | 10.01 | 204.16
6.00 261.04 | =10.75 § 90.00 0.09 | 148.40 | 12.01 } 293.70
6.99 305,68 § «11.,07 | 104,85 0.08 } 172.88 | 14.00 § 398.64
799 350.51 § =11.31 | 119.76 0.07 | 197.45 | 15.99 | 520.03
10.00 441,30 § =11.67 § 149.93 0.06 § 247.18 § 20.02 § 815400

¥

Table II. Parameters andkcharacteristic integrals of the
equilibrium solution.
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